Skip to main content

G-Protein-Coupled Receptors and Asthma Endophenotypes

The Cysteinyl Leukotriene System in Perspective

Abstract

Genetic variation in specific G-protein coupled receptors (GPCRs) is associated with a spectrum of respiratory disease predispositions and drug response phenotypes. Although certain GPCR gene variants can be disease-causing through the expression of inactive, overactive, or constitutively active receptor proteins, many more GPCR gene variants confer risk for potentially deleterious endophenotypes. Endophenotypes are traits, such as bronchiole hyperactivity, atopy, and aspirin intolerant asthma, which have a strong genetic component and are risk factors for a variety of more complex outcomes that may include disease states.

GPCR genes implicated in asthma endophenotypes include variants of the cysteinyl leukotriene receptors ((YSLTR1 and CYSLTR2), and prostaglandin D2 receptors (PTGDR and CRTH2), thromboxane A2 receptor (TBXA2R), β2-adrenergic receptor (ADRB2), chemokine receptor 5 (CCR5), and the G protein-coupled receptor associated with asthma (GPRA.) This review of the contribution of variability in these genes places the contribution of the cysteinyl leukotriene system to respiratory endophenotypes in perspective. The genetic variant(s) of receptors that are associated with endophenotypes are discussed in the context of the extent to which they contribute to a disease phenotype or altered drug efficacy.

This is a preview of subscription content, access via your institution.

Table I
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Lynch KR, O’Neill GP, Liu QY, et al. Characterization of the human cysteinyl leukotriene CysLT(l) receptor. Nature 1999; 399(6738): 789–93

    Article  PubMed  CAS  Google Scholar 

  2. Heise CE, O’Dowd BF, Figueroa DJ, et al. Characterization of the human cysteinyl leukotriene 2 receptor. J Biol Chem 2000; 275: 30531–6

    Article  PubMed  CAS  Google Scholar 

  3. Bisgaard H. Role of leukotrienes in asthma pathophysiology. Pediatr Pulmonol 2000; 30: 166–76

    Article  PubMed  CAS  Google Scholar 

  4. Bisgaard H. Pathophysiology of the cysteinyl leukotrienes and effects of leukotriene receptor antagonists in asthma. Allergy 2001; 56: 7–11

    Article  PubMed  Google Scholar 

  5. Thompson MD, Gravesandeg KSV, Galczenski H, et al. A cysteinyl leukotriene 2 receptor variant is associated with atopy in the population of Tristan da Cunha. Pharmacogenetics 2003; 13: 641–9

    Article  PubMed  CAS  Google Scholar 

  6. In KH, Asano K, Beier D, et al. Naturally occurring mutations in the human 5-lipoxygenase gene promoter that modify transcription factor binding and reporter gene transcription. J Clin Invest 1997; 99: 1130–7

    Article  PubMed  CAS  Google Scholar 

  7. Israel E, Drazen JM, Liggett SB, et al. Effect of polymorphism of the beta(2)-adrenergic receptor on response to regular use of albuterol in asthma. Int Arch Allergy Immunol 2001; 124: 183–6

    Article  PubMed  CAS  Google Scholar 

  8. Israel E, Drazen JM, Liggett SB, et al. The effect of polymorphisms of the beta(2)-adrenergic receptor on the response to regular use of albuterol in asthma. Am J Respir Crit Care Med 2000; 162: 75–80

    PubMed  CAS  Google Scholar 

  9. Oguma T, Palmer LJ, Birben E, et al. Role of prostanoid DP receptor variants in susceptibility to asthma. N Engl J Med 2004; 351: 1752–63

    Article  PubMed  CAS  Google Scholar 

  10. Cookson W, Moffatt M. Making sense of asthma genes. N Engl J Med 2004; 351: 1794–6

    Article  PubMed  CAS  Google Scholar 

  11. Kormann MSD, Carr D, Klopp N, et al. G-protein-coupled receptor polymorphisms are associated with asthma in a large German population. Am J Respir Crit Care Med 2005; 171: 1358–62

    Article  PubMed  Google Scholar 

  12. Melen E, Bruce S, Doekes G, et al. Haplotypes of G protein-coupled receptor 154 are associated with childhood allergy and asthma. Am J Respir Crit Care Med 2005; 171: 1089–95

    Article  PubMed  Google Scholar 

  13. Liggett SB. Polymorphisms of the beta(2)-adrenergic receptor and asthma. Am J Respir Crit Care Med 1997; 156 (4 Pt 2): S156–62

    PubMed  CAS  Google Scholar 

  14. Thompson MD, Burnham WM, Cole DEC. The G protein-coupled receptors: pharmacogenetics and disease. Crit Rev Clin Lab Sci 2005; 42: 311–92

    Article  PubMed  CAS  Google Scholar 

  15. Sibbald B. Extrinsic and intrinsic asthma: influence of classification on family history of asthma and allergic disease. Clin Allergy 1980; 10: 313–8

    Article  PubMed  CAS  Google Scholar 

  16. John B, Lewis KR. Chromosome variability and geographic distribution in insects: chromosome rather than gene variation provide the key to differences among populations. Science 1966; 152: 711–21

    Article  PubMed  CAS  Google Scholar 

  17. Gottesman II, Shields J. A polygenic theory of schizophrenia. Proc Natl Acad Sci U S A 1967; 58: 199–205

    Article  PubMed  CAS  Google Scholar 

  18. Gottesman II, Gould TD. The endophenotype concept in psychiatry: etymology and strategic intentions. Am J Psychiatry 2003; 160: 636–45

    Article  PubMed  Google Scholar 

  19. Marsh DG, Neely JD, Breazeale DR, et al. Linkage analysis of I14 and other chromosome 5Q31.1 markers and total serum immunoglobulin E concentrations. Science 1994; 264: 1152–6

    Article  PubMed  CAS  Google Scholar 

  20. Panhuysen CIM, Bleecker ER, Koeter GH, et al. Dutch approach to the study of the genetics of asthma. Clin Exp Allergy 1995; 25: 35–8

    Article  PubMed  Google Scholar 

  21. Dickson PW, Wong ZYH, Harrap SB, et al. Mutational analysis of the high affinity immunoglobulin E receptor beta subunit gene in asthma. Thorax 1999; 54: 409–12

    Article  PubMed  CAS  Google Scholar 

  22. Hemmingsen A, Fryer AA, Strange RC, et al. Polymorphism at the glutathione S-transferase: GSTP1 locus is associated with isocyanate-induced asthma: use of an ARMS-PCR assay for the simultaneous determination of (I105-V105) and A(114)-V-114 alleles. Chem Biol Interact 2001; 133: 120–2

    CAS  Google Scholar 

  23. Fryer AA, Spiteri MA, Bianco A, et al. The 403 G>A promoter polymorphism in the RANTES gene is associated with atopy and asthma. Genes Immun 2000; 1: 509–14

    Article  PubMed  CAS  Google Scholar 

  24. Hill MR, James AL, Faux JA, et al. Fc epsilon RI-beta polymorphism and risk of atopy in a general population sample. BMJ 1995 Sep 23; 311(7008): 776–9. Erratum in: BMJ 1995 Nov 4; 311 (7014): 1196

    Article  PubMed  CAS  Google Scholar 

  25. Leff AR. Regulation of leukotrienes in the management of asthma: biology and clinical therapy. Annu Rev Med 2001; 52: 1–14

    Article  PubMed  CAS  Google Scholar 

  26. Jinnai N, Sakagami T, Sekigawa T, et al. Polymorphisms in the prostaglandin E-2 receptor subtype 2 gene confer susceptibility to aspirin-intolerant asthma: a candidate gene approach. Hum Mol Genet 2004; 13: 3203–17

    Article  PubMed  CAS  Google Scholar 

  27. Nicolae D, Cox NJ, Lester LA, et al. Fine mapping and positional candidate studies identify HLA-G as an asthma susceptibility gene on chromosome 6p21. Am J Hum Genet 2005; 76: 349–57

    Article  PubMed  CAS  Google Scholar 

  28. Weiss LA, Lester LA, Gern JE, et al. Variation in ITGB3 is associated with asthma and sensitization to mold allergen in four populations. Am J Respir Crit Care Med 2005; 172: 67–73

    Article  PubMed  Google Scholar 

  29. Cookson WOC, Moffatt MF. Genetics of asthma and allergic disease. Hum Mol Genet 2000; 9: 2359–64

    Article  PubMed  CAS  Google Scholar 

  30. Van Eerdewegh P, Little RD, Dupuis J, et al. Association of the ADAM33 gene with asthma and bronchial hyperresponsiveness. Nature 2002; 418: 426–30

    Article  PubMed  CAS  Google Scholar 

  31. Davies DE, Wicks J, Powell RM, et al. Airway remodeling in asthma: new insights. J Allergy Clin Immunol 2003; 111: 215–25

    Article  PubMed  CAS  Google Scholar 

  32. Bruyninckx WJ, Comerford KM, Lawrence DW, et al. Phosphoinositide 3-kinase modulation of beta(3)-integrin represents an endogenous “braking” mechanism during neutrophil transmatrix migration. Blood 2001; 97: 3251–8

    Article  PubMed  CAS  Google Scholar 

  33. Bourgain C, Hoffjan S, Nicolae R, et al. Novel case-control test in a founder population identifies P-selectin as an atopy-susceptibility locus. Am J Hum Genet 2003; 73: 612–26

    Article  PubMed  CAS  Google Scholar 

  34. Mao XQ, Gao PS, Roberts MH, et al. Variants of endothelin-1 and its receptors in atopic asthma. Biochem Biophys Res Commun 1999; 262: 259–62

    Article  PubMed  CAS  Google Scholar 

  35. Holla LI, Vasku A, Izakovic V, et al. Variants of endothelin-1 gene in atopic diseases. J Investig Allergol Clin Immunol 2001; 11: 193–8

    PubMed  CAS  Google Scholar 

  36. Summerhill E, Leavitt SA, Gidley H, et al. Beta(2)-adrenergic receptor Argl6/ Argl6 genotype is associated with reduced lung function, but not with asthma, in the Hutterites. Am J Respir Crit Care Med 2000; 162: 599–602

    PubMed  CAS  Google Scholar 

  37. Sadee W, Hoeg E, Lucas J, et al. Genetic variations in human G protein-coupled receptors: implications for drug therapy. AAPS Pharmsci 2001; 3(3): e22

    Article  PubMed  CAS  Google Scholar 

  38. Small KM, Mcgraw DW, Liggett SB. Pharmacology and physiology of human adrenergic receptor polymorphisms. Annu Rev Pharmacol Toxicol 2003; 43: 381–411

    Article  PubMed  CAS  Google Scholar 

  39. Turki J, Pak J, Green SA, et al. Genetic polymorphisms of the beta 2-adrenergic receptor in nocturnal and nonnocturnal asthma: evidence that Glyl6 correlates with the nocturnal phenotype. J Clin Invest 1995; 95(4): 1635–41

    Article  PubMed  CAS  Google Scholar 

  40. Contopoulos-Ioannidis DG, Manoli EN, Ioannidis JP. Meta-analysis of the association of beta2-adrenergic receptor polymorphisms with asthma phenotypes. J Allergy Clin Immunol 2005; 115(5): 963–72

    Article  PubMed  CAS  Google Scholar 

  41. Martinez FD, Graves PE, Baldini M, et al. Association between genetic polymorphisms of the beta2-adrenoceptor and response to albuterol in children with and without a history of wheezing. J Clin Invest 1997; 100: 3184–8

    Article  PubMed  CAS  Google Scholar 

  42. Dewar JC, Wilkinson J, Wheatley A, et al. The glutamine 27 beta(2)-adrenoceptor polymorphism is associated with elevated IgE levels in asthmatic families. J Allergy Clin Immunol 1997; 100: 261–5

    Article  PubMed  CAS  Google Scholar 

  43. Large V, Hellstrom L, Reynisdottir S, et al. Human beta-2 adrenoceptor gene polymorphisms are highly frequent in obesity and associate with altered adipocyte beta-2 adrenoceptor function. J Clin Invest 1997; 100: 3005–13

    Article  PubMed  CAS  Google Scholar 

  44. Drysdale CM, Mcgraw DW, Stack CB, et al. Complex promoter and coding region beta(2)-adrenergic receptor haplotypes alter receptor expression and predict in vivo responsiveness. Proc Natl Acad Sci U S A 2000; 97: 10483–8

    Article  PubMed  CAS  Google Scholar 

  45. Wagoner LE, Craft LL, Singh B, et al. Polymorphisms of the beta(2)-adrenergic receptor determine exercise capacity in patients with heart failure. Circ Res 2000; 86(8): 834–40

    Article  PubMed  CAS  Google Scholar 

  46. Reihsaus E, Innis M, Macintyre N, et al. Mutations in the gene encoding for the beta-2-adrenergic receptor in normal and asthmatic subjects. Am J Respir Cell Mol Biol 1993; 8: 334–9

    PubMed  CAS  Google Scholar 

  47. Dishy V, Landau R, Sofowora G, et al. Beta-2-adrenoceptor thr164ile polymorphism is associated with markedly decreased vasodilator and increased vasoconstrictor sensitivity in vivo. Pharmacogenetics 2004; 14: 517–22

    Article  PubMed  CAS  Google Scholar 

  48. Lachance M, Ethier N, Wolbring G, et al. Stable association of G proteins with beta 2AR is independent of the state of receptor activation. Cell Signal 1999; 11(7): 523–33

    Article  PubMed  CAS  Google Scholar 

  49. Nagata K, Hirai H, Tanaka K, et al. CRTH2, an orphan receptor of T-helper-2-cells, is expressed on basophils and eosinophils and responds to mast cell-derived factor(s). FEBS Lett 1999; 459: 195–9

    Article  PubMed  CAS  Google Scholar 

  50. Nagata K, Tanaka K, Ogawa K, et al. Selective expression of a novel surface molecule by human Th2 cells in vivo. J Immunol 1999; 162: 1278–86

    PubMed  CAS  Google Scholar 

  51. Cosmi L, Annunziato F, Iwasaki M, et al. CRTH2 is the most reliable marker for the detection of circulating human type 2 Th and type 2 T cytotoxic cells in health and disease. Eur J Immunol 2000; 30: 2972–9

    Article  PubMed  CAS  Google Scholar 

  52. Dogne JM, de Levai X, Benoit P, et al. Therapeutic potential of thromboxane inhibitors in asthma. Expert Opin Investig Drugs 2002; 11: 275–81

    Article  PubMed  CAS  Google Scholar 

  53. Citro S, Ravasi S, Rovati GE, et al. Thromboxane prostanoid receptor signals through G(i) protein to rapidly activate extracellular signal-regulated kinase in human airways. Am J Respir Cell Mol Biol 2005; 32: 326–33

    Article  PubMed  CAS  Google Scholar 

  54. Kim SH, Choi JH, Park HS, et al. Association of thromboxane A2 receptor gene polymorphism with the phenotype of acetyl salicylic acid-intolerant asthma. Clin Exp Allergy 2005; 35: 585–90

    Article  PubMed  CAS  Google Scholar 

  55. Leung TF, Tang NLS, Lam CWK, et al. Thromboxane A2 receptor polymorphism is associated gene with the serum concentration of cat-specific immunoglobulin E as well as the development and severity of asthma in Chinese children. Expert Opin Investig Drugs 2002; 13: 10–7

    Google Scholar 

  56. Shin HD, Park BL, Jung JH, et al. Association of thromboxane A2 receptor (TBXA2R) with atopy and asthma. J Allergy Clin Immunol 2003; 112: 454–7

    Article  PubMed  Google Scholar 

  57. Unoki M, Furuta S, Onouchi Y, et al. Association studies of 33 single nucleotide polymorphisms (SNPs) in 29 candidate genes for bronchial asthma: positive association a T924C polymorphism in the thromboxane A2 receptor gene. Hum Genet 2000; 106: 440–6

    Article  PubMed  CAS  Google Scholar 

  58. Thompson MD, Zamel N, Slutsky AS, et al. Genetic variants in both cysteinyl leukotriene 1 and 2 receptors are independently associated with atopy and asthma in a Tristan da Cunha population [abstract]. Eur J Hum Genet 2005; 13: PI 066

    Google Scholar 

  59. Thompson MD, Storm K, Galczenski H, et al. A cysteinyl leukotriene 2 (CysLT(2)) receptor variant associated with atopy in the population of Tristan da Cunha. Am J Hum Genet 2002; 71: 207

    Google Scholar 

  60. Samson M, Libert F, Doranz BJ, et al. Resistance to HIV-1 infection in Caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature 1996; 382: 722–5

    Article  PubMed  CAS  Google Scholar 

  61. Hall IP, Wheatley A, Christie G, et al. Association of CCR5 del 32 with reduced risk of asthma. Lancet 1999; 354: 1264–5

    Article  PubMed  CAS  Google Scholar 

  62. Batra J, Sharma M, Chatterjee R, et al. CCR5 delta 32 deletion and atopic asthma in India [letter]. Thorax 2005; 60: 85

    PubMed  CAS  Google Scholar 

  63. Srivastava P, Helms PJ, Stewart D, et al. Association of CCR5 delta 32 with reduced risk of childhood but not adult asthma. Thorax 2003; 58: 222–6

    Article  PubMed  CAS  Google Scholar 

  64. Bonecchi R, Bianchi G, Bordignon PP, et al. Differential expression of chemokine receptors and chemotactic responsiveness of type 1 T helper cells (Th1s) and Th2s. J Exp Med 1998; 187: 129–34

    Article  PubMed  CAS  Google Scholar 

  65. Agrawal DK, Bharadwaj A. Allergic airway inflammation. Curr Allergy Asthma Rep 2005; 5: 142–8

    Article  PubMed  CAS  Google Scholar 

  66. Kere J, Laitinen T. Positionally cloned susceptibility genes in allergy and asthma. Curr Opin Immunol 2004; 16: 689–94

    Article  PubMed  CAS  Google Scholar 

  67. Laitinen T, Polvi A, Rydman P, et al. Characterization of a common susceptibility locus for asthma-related traits. Science 2004; 304: 300–4

    Article  PubMed  CAS  Google Scholar 

  68. Szczeklik A, Nizankowska E, Duplaga M. Natural history of aspirin-induced asthma. Eur Respir J 2000; 16: 432–6

    Article  PubMed  CAS  Google Scholar 

  69. Pierzchalska M, Szabo Z, Sanak M, et al. Deficient prostaglandin E-2 production by bronchial fibroblasts of asthmatic patients, with special reference to aspirin-induced asthma. J Allergy Clin Immunol 2003; 111: 1041–8

    Article  PubMed  CAS  Google Scholar 

  70. Cowburn AS, Sladek K, Soja J, et al. Overexpression of leukotriene C-4 synthase in bronchial biopsies from patients with aspirin-intolerant asthma. J Clin Invest 1998; 101: 834–46

    Article  PubMed  CAS  Google Scholar 

  71. Lam BK, Austen KF. Leukotriene C-4 synthase: a pivotal enzyme in the biosynthesis of the cysteinyl leukotrienes. Am J Respir Crit Care Med 2000; 161: S16–19

    PubMed  CAS  Google Scholar 

  72. Sampson AP, Cowburn AS, Sladek K, et al. Profound overexpression of leukotriene C-4 synthase in bronchial biopsies from aspirin-intolerant asthmatic patients. Int Arch Allergy Immunol 1997; 113: 355–7

    Article  PubMed  CAS  Google Scholar 

  73. Sanak M, Pierzchalska M, Bazan-Socha S, et al. Enhanced expression of the leukotriene C-4 synthase due to overactive transcription of an allelic variant associated with aspirin-intolerant asthma. Am J Respir Cell Mol Biol 2000; 23: 290–6

    PubMed  CAS  Google Scholar 

  74. Antczak A, Montuschi P, Kharitonov S, et al. Increased exhaled cysteinyl-leukotrienes and 8-isoprostane in aspirin-induced asthma. Am J Respir Crit Care Med 2002; 166: 301–6

    Article  PubMed  Google Scholar 

  75. Sanak M, Simon HU, Szczeklik A. Leukotriene C-4 synthase promoter polymorphism and risk of aspirin-induced asthma. Lancet 1997; 350: 1599–600

    Article  PubMed  CAS  Google Scholar 

  76. Van Sambeek R, Stevenson DD, Baldasaro M, et al. 5’ Flanking region polymorphism of the gene encoding leukotriene C-4 synthase does not correlate with the aspirin-intolerant asthma phenotype in the United States. J Allergy Clin Immunol 2000; 106: 72–6

    Article  PubMed  Google Scholar 

  77. Kawagishi Y, Mita H, Taniguchi M, et al. Leukotriene C-4 synthase promoter polymorphism in Japanese patients with aspirin-induced asthma. J Allergy Clin Immunol 2002; 109: 936–42

    Article  PubMed  CAS  Google Scholar 

  78. Park JS, Chang HS, Park CS, et al. Association analysis of cysteinyl-leukotriene receptor 2 (CYSLTR2) polymorphisms with aspirin intolerance in asthmatics. Pharmacogenet Genomics 2005; 15: 483–92

    Article  PubMed  CAS  Google Scholar 

  79. Choi JH, Park HS, Oh HB, et al. Leukotriene-related gene polymorphisms in ASA-intolerant asthma: an association with a haplotype of 5-lipoxygenase. Hum Genet 2004; 114: 337–44

    Article  PubMed  CAS  Google Scholar 

  80. Taylor GW, Black P, Turner N, et al. Urinary leukotriene-E4 after antigen challenge and in acute asthma and allergic rhinitis. Lancet 1989; I: 584–8

    Article  Google Scholar 

  81. Kikawa Y, Miyanomae T, Inoue Y, et al. Urinary leukotriene E4 after exercise challenge in children with asthma. J Allergy Clin Immunol 1992; 89: 1111–9

    Article  PubMed  CAS  Google Scholar 

  82. Asano K, Lilly CM, Odonnell WJ, et al. Diurnal-variation of urinary leukotriene E(4) and histamine excretion rates in normal subjects and patients with mild-to-moderate asthma. J Allergy Clin Immunol 1995; 96: 643–51

    Article  PubMed  CAS  Google Scholar 

  83. Samuelsson B. Leukotrienes: mediators of immediate hypersensitivity reactions and inflammation. Science 1983; 220: 568–75

    Article  PubMed  CAS  Google Scholar 

  84. Duffy DL, Martin NG, Battistutta D, et al. Genetics of asthma and hay-fever in Australian twins. Am Rev Respir Dis 1990; 142: 1351–8

    PubMed  CAS  Google Scholar 

  85. Shirakawa T, Mao XQ, Sasaki S, et al. Association between Fc epsilon RI beta and atopic disorder in a Japanese population. Lancet 1996; 347: 394–5

    Article  PubMed  CAS  Google Scholar 

  86. Ober C, Tsalenko A, Parry R, et al. A second-generation genomewide screen for asthma-susceptibility alleles in a founder population. Am J Hum Genet 2000; 67: 1154–62

    PubMed  CAS  Google Scholar 

  87. Thomas NS, Wilkinson J, Lonjou C, et al. Linkage analysis of markers on chromosome Ilql3 with asthma and atopy in a United Kingdom population. Am J Respir Crit Care Med 2000; 162: 1268–72

    Google Scholar 

  88. Greenwood CM, Bureau A, Loredo-Osti JC, et al. Pedigree selection and tests of linkage in a Hutterite asthma pedigree. Am Rev Respir Dis 2001; 21: S244–51

    Google Scholar 

  89. Gao PS, Mao XQ, Baldini M, et al. Serum total IgE levels and CD14 on chromosome 5q31. Clin Genet 1999; 56: 164–5

    Article  PubMed  CAS  Google Scholar 

  90. Adra CN, Mao XQ, Kawada H, et al. Chromosome 11q13 and atopic asthma. Clin Genet 1999; 55: 431–7

    Article  PubMed  CAS  Google Scholar 

  91. Donate JL, Cai HB, Adra CN. The subcellular distribution of HTm4, a hematopoietic specific protein and a canditade gene for atopy: identification of the CDK-associated phosphatase KAP as an interacting protein [abstract]. Am J Hum Genet 1999; 65: A269

    Google Scholar 

  92. Gao PS, Mao XQ, Jouanguy E, et al. Nonpathogenic common variants of IFNGR1 and IFNGR2 in association with total serum IgE levels. Biochem Biophys Res Commun 1999; 263: 425–9

    Article  PubMed  CAS  Google Scholar 

  93. Zhang YM, Leaves NI, Anderson GG, et al. Positional cloning of a quantitative trait locus on chromosome 13q l4 that influences immunoglobulin E levels and asthma. Nat Genet 2003; 34: 181–6

    Article  PubMed  CAS  Google Scholar 

  94. Daniels SE, Bhattacharrya S, James A, et al. A genome-wide search for quantitative trait loci underlying asthma. Nature 1996; 383: 247–50

    Article  PubMed  CAS  Google Scholar 

  95. Liggett SB. The pharmacogenetics of beta(2)-adrenergic receptors: relevance to asthma. J Allergy Clin Immunol 2000; 105 (2 Pt 2): S487–92

    Article  PubMed  CAS  Google Scholar 

  96. Spik I, Brenuchon C, Angeli V, et al. Activation of the prostaglandin D-2 receptor DP2/CRTH2 increases allergic inflammation in mouse. J Immunol 2005; 174: 3703–8

    PubMed  CAS  Google Scholar 

  97. Hirai H, Tanaka K, Yoshie O, et al. Prostaglandin D2 selectively induces chemotaxis in T helper type 2 cells, eosinophils, and basophils via seven-transmembrane receptor CRTH2. J Exp Med 2001; 193: 255–61

    Article  PubMed  CAS  Google Scholar 

  98. Huang JL, Gao PS, Mathias RA, et al. Sequence variants of the gene encoding chemoattractant receptor expressed on Th2 cells (CRTH2) are associated with asthma and differentially influence mRNA stability. Hum Mol Genet 2004; 13: 2691–7

    Article  PubMed  CAS  Google Scholar 

  99. Aizawa H, Shigyo M, Nogami H, et al. BAY u3405, a thromboxane A2 antagonist, reduces bronchial hyperresponsiveness in asthmatics. Chest 1996; 109: 338–42

    Article  PubMed  CAS  Google Scholar 

  100. Fujimura M, Nakatsumi Y, Nishi K, et al. Involvement of thromboxane A2 in bronchial hyperresponsiveness of asthma: Kanazawa asthma research group. Pulm Pharmacol 1995; 8: 251–7

    Article  PubMed  CAS  Google Scholar 

  101. Narumiya S, FitzGerald GA. Genetic and pharmacological analysis of prostanoid receptor function. J Clin Investig 2001; 108: 25–30

    PubMed  CAS  Google Scholar 

  102. Capra V, Habib A, Accomazzo MR, et al. Thromboxane prostanoid receptor in human airway smooth muscle cells: a relevant role in proliferation. Eur J Pharmacol 2003; 474: 149–59

    Article  PubMed  CAS  Google Scholar 

  103. Devillier P, Bessard G. Thromboxane A(2) and related prostaglandins in airways. Fundam Clin Pharmacol 1997; 11: 2–18

    Article  PubMed  CAS  Google Scholar 

  104. Nishimura H, Tokuyama K, Inoue Y, et al. Acute effects of prostaglandin D-2 to induce airflow obstruction and airway microvascular leakage in guinea pigs: role of thromboxane A(2) receptors. Prostaglandins Other Lipid Mediat 2001; 66: 1–15

    Article  PubMed  CAS  Google Scholar 

  105. Meyers JH, Chakravarti S, Schlesinger D, et al. TIM-4 is the ligand for TIM-1, and the TIM-l-TIM-4 interaction regulates T cell proliferation. Nat Immunol 2005; 6: 455–64

    Article  PubMed  CAS  Google Scholar 

  106. Allen M, Heinzmann A, Noguchi E, et al. Positional cloning of a novel gene influencing asthma from Chromosome 2q14. Nat Genet 2003; 35: 258–63

    Article  PubMed  CAS  Google Scholar 

  107. Zamel N, McClean PA, Sandell PR, et al. Asthma on Tristan de Cunha: Looking for the genetic link. Am J Respir Crit Care Med 1996; 153: 1902–6

    PubMed  CAS  Google Scholar 

  108. Slutsky AS, Zamel N. Genetics of asthma: the University of Toronto program. Am J Respir Crit Care Med 1997; 156 (4 Pt 2): S130–2

    PubMed  CAS  Google Scholar 

  109. Templeton AR. The theory of speciation via the founder principle. Genetics 1980; 94: 1011–38

    PubMed  CAS  Google Scholar 

  110. Laitinen T, Daly MJ, Rioux JD, et al. A susceptibility locus for asthma-related traits on chromosome 7 revealed by genome-wide scan in a founder population. Nat Genet 2001; 28: 87–91

    PubMed  CAS  Google Scholar 

  111. Poon AH, Laprise C, Lemire M, et al. Association of vitamin D receptor genetic variants with susceptibility to asthma and atopy. Am J Respir Crit Care Med 2004; 170: 967–73

    Article  PubMed  Google Scholar 

  112. Slutsky AS, Zamel N. Genetics of asthma: University of Toronto. Clin Exp Allergy 1995; 25(Suppl. 2): 33–4

    Article  PubMed  Google Scholar 

  113. Upton MN, McConnachie A, McSharry C, et al. Intergenerational 20 year trends in the prevalence of asthma and hay fever in adults: the Midspan family study surveys of parents and offspring. BMJ 2000; 321: 88–92

    Article  PubMed  CAS  Google Scholar 

  114. Thompson MD, Bowen RA, Wong BY, et al. Whole genome amplification of buccal cell DNA: genotyping concordance before and after multiple displacement amplification. Clin Chem Lab Med 2005; 43: 157–62

    Article  PubMed  CAS  Google Scholar 

  115. Maekawa A, Austen KF, Kanaoka Y. Targeted gene disruption reveals the role of cysteinyl leukotriene 1 receptor in the enhanced vascular permeability of mice undergoing acute inflammatory responses. J Biol Chem 2002; 277: 20820–4

    Article  PubMed  CAS  Google Scholar 

  116. Severien C, Artlich A, Jonas S, et al. Urinary excretion of leukotriene E-4 and eosinophil protein X in children with atopic asthma. Eur Respir J 2000; 16: 588–92

    Article  PubMed  CAS  Google Scholar 

  117. Takasaki J, Kamohara M, Matsumoto M, et al. The molecular characterization and tissue distribution of the human cysteinyl leukotriene CysLT(2) receptor. Biochem Biophys Res Commun 2000; 274: 316–22

    Article  PubMed  CAS  Google Scholar 

  118. Figueroa DJ, Breyer RM, Defoe SK, et al. Expression of the cysteinyl leukotriene 1 receptor in normal human lung and peripheral blood leukocytes. Am J Respir Crit Care Med 2001; 163: 226–33

    PubMed  CAS  Google Scholar 

  119. Metters KM. Leukotriene receptors. J Lipid Mediat Cell Signal 1995; 12: 413–27

    Article  PubMed  CAS  Google Scholar 

  120. Mita H, Hasegawa M, Saito H, et al. Levels of cysteinyl leukotriene receptor mRNA in human peripheral leucocytes: significantly higher expression of cysteinyl leukotriene receptor 2 mRNA in eosinophils. Clin Exp Allergy 2001; 31: 1714–23

    Article  PubMed  CAS  Google Scholar 

  121. Kanaoka Y, Maekawa A, Penrose JF, et al. Attenuated zymosan-induced peritoneal vascular permeability and IgE dependent passive cutaneous anaphylaxis in mice lacking leukotriene C-4 synthase. J Biol Chem 2001; 276: 22608–13

    Article  PubMed  CAS  Google Scholar 

  122. Beller TC, Maekawa A, Friend DS, et al. Targeted gene disruption reveals the role of the cysteinyl leukotriene 2 receptor in increased vascular permeability and in bleomycin-induced pulmonary fibrosis in mice. J Biol Chem 2004; 279: 46129–34

    Article  PubMed  CAS  Google Scholar 

  123. Beller TC, Friend DS, Maekawa A, et al. Cysteinyl leukotriene 1 receptor controls the severity of chronic pulmonary inflammation and fibrosis. Proc Natl Acad sci U S A 2004; 101: 3047–52

    Article  PubMed  CAS  Google Scholar 

  124. Maekawa A, Kanaoka Y, Lam BK, et al. Identification in mice of two isoforms of the cysteinyl leukotriene 1 receptor that result from alternative splicing. Proc Natl Acad sci U S A 2001; 98: 2256–61

    Article  PubMed  CAS  Google Scholar 

  125. Samuelsson B, Dahlen SE, Lindgren JA, et al. Leukotrienes and lipoxins; structures, biosynthesis, and biological effects. Science 1987; 237: 1171–6

    Article  PubMed  CAS  Google Scholar 

  126. Palmer LJ, Silverman ES, Weiss ST, et al. Pharmacogenetics of asthma. Am J Respir Crit Care Med 2002; 165: 861–6

    Article  PubMed  Google Scholar 

  127. Israel E. Genetics and the variability of treatment response in asthma. J Allergy Clin Immunol 2005; 115(4 Suppl.): S532–8

    Article  PubMed  CAS  Google Scholar 

  128. Holgate ST, Bradding P, Sampson AP. Leukotriene antagonists and synthesis inhibitors: New directions in asthma therapy. J Allergy Clin Immunol 1996; 98: 1–13

    Article  PubMed  CAS  Google Scholar 

  129. Drazen JM, Israel E, O’Byrne PM. Treatment of asthma with drugs modifying the leukotriene pathway. N Engl J Med 1999; 340: 197–206

    Article  PubMed  CAS  Google Scholar 

  130. Silverman ES, Du J, De Sanctis GT, et al. Egr-1 and Sp1 interact functionally with the 5-lipoxygenase promoter and its naturally occurring mutants. Am J Respir Cell Mol Biol 1998; 19: 316–23

    PubMed  CAS  Google Scholar 

  131. Sayers I, Barton S, Rorke S, et al. Promoter polymorphism in the 5-lipoxygenase (ALOX5) and 5-lipoxygenase-activating protein (ALOX5AP) genes and asthma susceptibility in a Caucasian population. Clin Exp Allergy 2003; 33: 1103–10

    Article  PubMed  CAS  Google Scholar 

  132. Drazen JM, Yandava CN, Dube L, et al. Pharmacogenetic association between ALOX5 promoter genotype and the response to anti-asthma treatment. Nat Genet 1999; 22: 168–70

    Article  PubMed  CAS  Google Scholar 

  133. Sampson AP, Siddiqui S, Buchanan D, et al. Variant LTC4 synthase allele modifies cysteinyl leukotriene synthesis in eosinophils and predicts clinical response to zafirlukast. Thorax 2000; 55(Suppl. 2): S28–31

    Article  PubMed  Google Scholar 

  134. Reiss TF, Altman LC, Chervinsky P, et al. Effects of montelukast (MK-0476), a new potent cysteinyl leukotriene (LDT(4)) receptor antagonist, in patients with chronic asthma. J Allergy Clin Immunol 1996; 98: 528–34

    Article  PubMed  CAS  Google Scholar 

  135. Grossman J, Faiferman I, Dubb JW, et al. Results of the first US double-blind, placebo-controlled, multicenter clinical study in asthma with pranlukast, a novel leukotriene receptor antagonist. J Asthma 1997; 34: 321–8

    Article  PubMed  CAS  Google Scholar 

  136. Suissa S, Dennis R, Ernst P, et al. Effectiveness of the leukotriene receptor antagonist zafirlukast for mild-to-moderate asthma: a randomized, double-blind, placebo-controlled trial. Ann Intern Med 1997; 126: 177–83

    PubMed  CAS  Google Scholar 

  137. Jarvis B, Markham A. Montelukast: a review of its therapeutic potential in persistent asthma. Drugs 2000; 59: 891–928

    Article  PubMed  CAS  Google Scholar 

  138. Krawiec ME, Wenzel SE. Use of leukotriene antagonists in childhood asthma. Curr Opin Pediatr 1999 Dec; 11(6): 540–7. Review. Erratum in: Curr Opin Pediatr 2000 Feb; 12 (1): 96

    Article  PubMed  CAS  Google Scholar 

  139. Drazen JM, Silverman EK, Lee TH. Heterogeneity of therapeutic responses in asthma. Br Med Bull 2000; 56: 1054–70

    Article  PubMed  CAS  Google Scholar 

  140. Yoshida S, Sakamoto H, Ishizaki Y, et al. Efficacy of leukotriene receptor antagonist in bronchial hyperresponsiveness and hypersensitivity to analgesic in aspirin-intolerant asthma. Clin Exp Allergy 2000; 30: 64–70

    Article  PubMed  CAS  Google Scholar 

  141. Obase Y, Shimoda T, Tomari S, et al. Effects of pranlukast on aspirin-induced bronchoconstriction: differences in chemical mediators between aspirin-intolerant and tolerant asthmatic patients. Ann Allergy Asthma Immunol 2001; 87: 74–9

    Article  PubMed  CAS  Google Scholar 

  142. Williams B, Noonan G, Reiss TF, et al. Long-term asthma control with oral montelukast and inhaled beclomethasone for adults and children 6 years and older. Clin Exp Allergy 2001; 31: 845–54

    Article  PubMed  CAS  Google Scholar 

  143. Meltzer EO, Malmstrom K, Lu S, et al. Concomitant montelukast and loratadine as treatment for seasonal allergic rhinitis: a randomized, placebo-controlled clinical trial. J Allergy Clin Immunol 2000; 105: 917–22

    Article  PubMed  CAS  Google Scholar 

  144. Noonan MJ, Chervinsky P, Brandon M, et al. Montelukast, a potent leukotriene receptor antagonist, causes dose-related improvements in chronic asthma. Eur Respir J 1998; 11: 1232–9

    Article  PubMed  CAS  Google Scholar 

  145. Woszczek G, Pawliczak R, Qi HY, et al. Functional characterization of human cysteinyl leukotriene 1 receptor gene structure. J Immunol 2005; 175: 5152–9

    PubMed  CAS  Google Scholar 

  146. Kimura K, Noguchi E, Shibasaki M, et al. Linkage and association of atopic asthma to markers on chromosome 13 in the Japanese population. Hum Mol Genet 1999; 8: 1487–90

    Article  PubMed  CAS  Google Scholar 

  147. Rashid AJ, O’Dowd BF, George SR. Minireview: diversity and complexity of signaling through peptidergic G protein-coupled receptors. Endocrinology 2004; 145: 2645–52

    Article  PubMed  CAS  Google Scholar 

  148. Tudhope SR, Cuthbert NJ, Abram TS, et al. Bay-U9773: a novel antagonist of cysteinyl-leukotrienes with activity against 2 receptor subtypes. Eur J Pharmacol 1994; 264: 317–23

    Article  PubMed  CAS  Google Scholar 

  149. Palczewski K, Kumasaka T, Hori T, et al. Crystal structure of rhodopsin: a G protein-coupled receptor. Science 2000; 289: 739–45

    Article  PubMed  CAS  Google Scholar 

  150. Pillai SG, Cousens DJ, Barnes AA, et al. A coding polymorphism in the CYSLT2 receptor with reduced affinity to LTD4 is associated with asthma. Pharmacogenetics 2004; 14: 627–33

    Article  PubMed  CAS  Google Scholar 

  151. Cookson WOCM, Faux JA, Sharp PA, et al. Linkage between immunoglobulin E responses underlying asthma and rhinitis and chromosome-11Q. Lancet 1989; I: 1292–5

    Article  Google Scholar 

  152. Ono SJ. Molecular genetics of allergic diseases. Annu Rev Immunol 2000; 18: 347–66

    Article  PubMed  CAS  Google Scholar 

  153. Fukai H, Ogasawara Y, Migita O, et al. Association between a polymorphism in cysteinyl leukotriene receptor 2 on chromosome 13q 14 and atopic asthma. Pharmacogenetics 2004; 14: 683–90

    Article  PubMed  CAS  Google Scholar 

  154. Carlson CS, Eberle MA, Rieder MJ, et al. Selecting a maximally informative set of single-nucleotide polymorphisms for association analyses using linkage disequilibrium. Am J Hum Genet 2004; 74: 106–20

    Article  PubMed  CAS  Google Scholar 

  155. FBAT program [online]. Available from URL: http://biostat.harvard.edu/~fbat/fbat.htm [Accessed 2006 Dec 1]

  156. Spiegel AM. Defects in G protein-coupled signal transduction in human disease. Annu Rev Physiol 1996; 58: 143–70

    Article  PubMed  CAS  Google Scholar 

  157. Milligan G. Strategies to identify ligands for orphan G-protein-coupled receptors. Biochem Soc Trans 2002; 30: 789–93

    Article  PubMed  CAS  Google Scholar 

  158. Spiegel AM, Weinstein LS. Inherited diseases involving G proteins and G protein-coupled receptors. Annu Rev Med 2004; 55: 27–39

    Article  PubMed  CAS  Google Scholar 

  159. Bautz F, Denzlinger C, Kanz L, et al. Chemotaxis and transendothelial migration of CD34(+) hematopoietic progenitor cells induced by the inflammatory mediator leukotriene D4 are mediated by the 7-transmembrane receptor CysLTl. Blood 2001; 97: 3433–40

    Article  PubMed  CAS  Google Scholar 

  160. Horn F, Bywater R, Krause G, et al. The interaction of class B G protein-coupled receptors with their hormones. Receptors Channels 1998; 5: 305–14

    PubMed  CAS  Google Scholar 

  161. Horn F, Vriend G. G protein-coupled receptors in silico. J Mol Med 1998; 76: 464–8

    Article  PubMed  CAS  Google Scholar 

  162. Renzi PM. Antileukotriene agents in asthma: the dart that kills the elephant? CMAJ 1999; 160: 217–23

    PubMed  CAS  Google Scholar 

  163. Capra V, Thompson MD, Cole DEC, et al. Cysteinyl-leukotrienes and their receptors in health and disease. Med Res Rev. Epub 2006 Aug 7

Download references

Acknowledgments

This work was supported in part by grants from the National Science and Engineering Research Council and Dairy Farmers of Canada (to David E.C. Cole), from Genome Canada/Ontario Genomics Institute (to Kathy A. Siminovitch and David E.C. Cole), and from the Canadian Institutes of Health Research (to Miles D. Thompson). The authors wish to acknowledge the assistance of the technical staff from the Analytical Genetics Technology Centre (AGTC) at the University Health Network (Toronto, ON, Canada). The authors have no conflicts of interest directly relevant to the contents of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miles D. Thompson.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Thompson, M.D., Takasaki, J., Capra, V. et al. G-Protein-Coupled Receptors and Asthma Endophenotypes. Mol Diag Ther 10, 353–366 (2006). https://doi.org/10.1007/BF03256212

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03256212

Keywords