Skip to main content
Log in

Vitamin D and breast cancer: Molecular communications

  • Review
  • Published:
Journal of the Korean Society for Applied Biological Chemistry Submit manuscript

Abstract

Epidemiological studies have demonstrated that vitamin D status is inversely associated with breast cancer incidence, mortality, and recurrences, suggesting vitamin D as a potent agent to reduce the risk of breast cancer. The hormonally active metabolite of vitamin D, 1α,25- dihydroxyvitamin D (1α,25(OH)2D, calcitriol), and its analogs have exerted inhibitory activity of cellular proliferation through arresting cell cycle and inducing apoptosis, and suppressive effects on the invasion, angiogenesis, and metastasis of breast cancer. In the studies of molecular basis of vitamin D activities, many upstream signaling pathways cross-talking with vitamin D signaling have been investigated. 1α,25(OH)2D and its analogs regulates different signaling pathways mediated by transforming growth factor-β superfamily, epidermal growth factor receptors family, estrogen signaling-related molecules, insulin-like growth factor-binding proteins, and protein kinase C. The multipotent activities of vitamin D in signaling modulation may be efficient and effective in suppressing highly heterogeneous breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bierie B and Moses HL (2006) Tumour microenvironment: TGFbeta: The molecular Jekyll and Hyde of cancer. Nat Rev Cancer 6, 506–520.

    CAS  Google Scholar 

  • Bizzarri M, Cucina A, Valente MG, Tagliaferri F, Borrelli V, Stipa F, and Cavallaro A (2003) Melatonin and vitamin D3 increase TGF-beta1 release and induce growth inhibition in breast cancer cell cultures. J Surg Res 110, 332–337.

    CAS  Google Scholar 

  • Boyan BD, Wang L, Wong KL, Jo H, and Schwartz Z (2006a) Plasma membrane requirements for 1alpha,25(OH)2D3 dependent PKC signaling in chondrocytes and osteoblasts. Steroids 71, 286–290.

    CAS  Google Scholar 

  • Boyan BD, Wong KL, Wang L, Yao H, Guldberg RE, Drab M, Jo H and Schwartz Z (2006b) Regulation of growth plate chondrocytes by 1,25-dihydroxyvitamin D3 requires caveolae and caveolin-1. J Bone Miner Res 21, 1637–1647.

    CAS  Google Scholar 

  • Boyle BJ, Zhao XY, Cohen P, and Feldman D (2001) Insulinlike growth factor binding protein-3 mediates 1 alpha,25- dihydroxyvitamin d(3) growth inhibition in the LNCaP prostate cancer cell line through p21/WAF1. J Urol 165, 1319–1324.

    CAS  Google Scholar 

  • Brosseau CM, Pirianov G, and Colston KW (2010) Involvement of stress activated protein kinases (JNK and p38) in 1,25 dihydroxyvitamin D3-induced breast cell death. Steroids 75, 1082–1088.

    CAS  Google Scholar 

  • Brown AJ, Dusso A, and Slatopolsky E (1999) Vitamin D. Am J Physiol 277, F157–175.

    CAS  Google Scholar 

  • Buitrago CG, Pardo VG, de Boland AR, and Boland R (2003) Activation of RAF-1 through Ras and protein kinase Calpha mediates 1alpha,25(OH)2-vitamin D3 regulation of the mitogen-activated protein kinase pathway in muscle cells. J Biol Chem 278, 2199–2205.

    CAS  Google Scholar 

  • Capiati DA, Rossi AM, Picotto G, Benassati S, and Boland RL (2004) Inhibition of serum-stimulated mitogen activated protein kinase by 1alpha,25(OH)2-vitamin D3 in MCF-7 breast cancer cells. J Cell Biochem 93, 384–397.

    CAS  Google Scholar 

  • Carlberg C, Dunlop TW, Saramaki A, Sinkkonen L, Matilainen M, and Vaisanen S (2007) Controlling the chromatin organization of vitamin D target genes by multiple vitamin D receptor binding sites. J Steroid Biochem Mol Biol 103, 338–343.

    CAS  Google Scholar 

  • Chan JM, Stampfer MJ, Giovannucci E, Gann PH, Ma J, Wilkinson P, Hennekens CH, and Pollak M (1998) Plasma insulin-like growth factor-I and prostate cancer risk: A prospective study. Science 279, 563–566.

    CAS  Google Scholar 

  • Chaudhry M, Sundaram S, Gennings C, Carter H, and Gewirtz DA (2001) The vitamin D3 analog, ILX-23-7553, enhances the response to adriamycin and irradiation in MCF-7 breast tumor cells. Cancer Chemother Pharmacol 47, 429–436.

    CAS  Google Scholar 

  • Cordes T, Diesing D, Becker S, Diedrich K, Reichrath J, and Friedrich M (2006) Modulation of MAPK ERK1 and ERK2 in VDR-positive and -negative breast cancer cell lines. Anticancer Res 26, 2749–2753.

    CAS  Google Scholar 

  • Cuzick J, DeCensi A, Arun B, Brown PH, Castiglione M, Dunn B, Forbes JF, Glaus A, Howell A, von Minckwitz G, Vogel V, and Zwierzina H (2011) Preventive therapy for breast cancer: A consensus statement. Lancet Oncol 12, 496–503.

    CAS  Google Scholar 

  • Deeb KK, Trump DL, and Johnson CS (2007) Vitamin D signalling pathways in cancer: potential for anticancer therapeutics. Nat Rev Cancer 7, 684–700.

    CAS  Google Scholar 

  • Detjen KM, Brembeck FH, Welzel M, Kaiser A, Haller H, Wiedenmann B, and Rosewicz S (2000) Activation of protein kinase Calpha inhibits growth of pancreatic cancer cells via p21(cip)-mediated G(1) arrest. J Cell Sci 113, 3025–3035.

    CAS  Google Scholar 

  • Dusso AS, Brown AJ, and Slatopolsky E (2005) Vitamin D. Am J Physiol Renal Physiol 289, F8–28.

    CAS  Google Scholar 

  • El Abdaimi K, Dion N, Papavasiliou V, Cardinal PE, Binderup L, Goltzman D, Ste-Marie LG, and Kremer R (2000) The vitamin D analogue EB 1089 prevents skeletal metastasis and prolongs survival time in nude mice transplanted with human breast cancer cells. Cancer Res 60, 4412–4418.

    CAS  Google Scholar 

  • Eliassen AH, Spiegelman D, Hollis BW, Horst RL, Willett WC, and Hankinson SE (2011) Plasma 25-hydroxyvitamin D and risk of breast cancer in the Nurses’ Health Study II. Breast Cancer Res 13, R50.

    Google Scholar 

  • Enjuanes A, Garcia-Giralt N, Supervia A, Nogues X, Mellibovsky L, Carbonell J, Grinberg D, Balcells S, and Diez-Perez A (2003) Regulation of CYP19 gene expression in primary human osteoblasts: Effects of vitamin D and other treatments Eur J Endocrinol 148, 519–526.

    CAS  Google Scholar 

  • Flanagan L, Packman K, Juba B, O’Neill S, Tenniswood M, and Welsh J (2003) Efficacy of Vitamin D compounds to modulate estrogen receptor negative breast cancer growth and invasion. J Steroid Biochem Mol Biol 84, 181–192.

    CAS  Google Scholar 

  • Fraser DR and Kodicek E (1970) Unique biosynthesis by kidney of a biological active vitamin D metabolite. Nature 228, 764–766.

    CAS  Google Scholar 

  • Garland CF, Garland FC, Gorham ED, Lipkin M, Newmark H, Mohr SB, and Holick MF (2006) The role of vitamin D in cancer prevention. Am J Public Health 96, 252–261.

    Google Scholar 

  • Garland CF, Gorham ED, Mohr SB, Grant WB, Giovannucci EL, Lipkin M, Newmark H, Holick MF, and Garland FC (2007) Vitamin D and prevention of breast cancer: pooled analysis. J Steroid Biochem Mol Biol 103, 708–711.

    Google Scholar 

  • Gilad LA, Bresler T, Gnainsky J, Smirnoff P, and Schwartz B (2005) Regulation of vitamin D receptor expression via estrogen-induced activation of the ERK 1/2 signaling pathway in colon and breast cancer cells. J Endocrinol 185, 577–592.

    CAS  Google Scholar 

  • Grimberg A and Cohen P (2000) Role of insulin-like growth factors and their binding proteins in growth control and carcinogenesis. J Cell Physiol 183, 1–9.

    CAS  Google Scholar 

  • Griner EM and Kazanietz MG (2007) Protein kinase C and other diacylglycerol effectors in cancer. Nat Rev Cancer 7, 281–294.

    CAS  Google Scholar 

  • Guzey M, Luo J, and Getzenberg RH (2004) Vitamin D3 modulated gene expression patterns in human primary normal and cancer prostate cells. J Cell Biochem 93, 271–285.

    CAS  Google Scholar 

  • Hackel PO, Zwick E, Prenzel N, and Ullrich A (1999) Epidermal growth factor receptors: Critical mediators of multiple receptor pathways. Curr Opin Cell Biol 11, 184–189.

    CAS  Google Scholar 

  • Hatakeyama S, Ohara-Nemoto Y, Kyakumoto S, and Satoh M (1996) Retinoic acid enhances expression of bone morphogenetic protein-2 in human adenocarcinoma cell line (HSG-S8). Biochem Mol Biol Int 38, 1235–1243.

    CAS  Google Scholar 

  • Haussler MR and Norman AW (1969) Chromosomal receptor for a vitamin D metabolite. Proc Natl Acad Sci USA 62, 155–162.

    CAS  Google Scholar 

  • Haussler MR, Whitfield GK, Haussler CA, Hsieh JC, Thompson PD, Selznick SH, Dominguez CE, and Jurutka PW (1998) The nuclear vitamin D receptor: Biological and molecular regulatory properties revealed. J Bone Miner Res 13, 325–349

    CAS  Google Scholar 

  • Hewison M, Zehnder D, Chakraverty R, and Adams JS (2004) Vitamin D and barrier function: A novel role for extra-renal 1 alpha-hydroxylase. Mol Cell Endocrinol 215, 31–38.

    CAS  Google Scholar 

  • Holick MF (1981) The cutaneous photosynthesis of previtamin D3: A unique photoendocrine system. J Invest Dermatol 77, 51–58.

    CAS  Google Scholar 

  • Holick MF (2007) Vitamin D deficiency. N Engl J Med 357, 266–281.

    CAS  Google Scholar 

  • Holick MF (2009) Vitamin D status: Measurement, interpretation, and clinical application. Ann Epidemiol 19, 73–78.

    Google Scholar 

  • Hussain-Hakimjee EA, Peng X, Mehta RR, and Mehta RG (2006) Growth inhibition of carcinogen-transformed MCF- 12F breast epithelial cells and hormone-sensitive BT-474 breast cancer cells by 1alpha-hydroxyvitamin D5. Carcinogenesis 27, 551–559.

    CAS  Google Scholar 

  • James SY, Mackay AG, and Colston KW (1995) Vitamin D derivatives in combination with 9-cis retinoic acid promote active cell death in breast cancer cells. J Mol Endocrinol 14, 391–394.

    CAS  Google Scholar 

  • James SY, Mackay AG, and Colston KW (1996) Effects of 1,25 dihydroxyvitamin D3 and its analogues on induction of apoptosis in breast cancer cells. J Steroid Biochem Mol Biol 58, 395–401.

    CAS  Google Scholar 

  • Janowsky EC, Lester GE, Weinberg CR, Millikan RC, Schildkraut JM, Garrett PA, and Hulka BS (1999) Association between low levels of 1,25-dihydroxyvitamin D and breast cancer risk. Public Health Nutr 2, 283–291.

    CAS  Google Scholar 

  • Jemal A, Bray F, Center MM, Ferlay J, Ward E, and Forman D (2011) Global cancer statistics. CA Cancer J Clin 61, 69–90.

    Google Scholar 

  • Jensen SS, Madsen MW, Lukas J, Binderup L, and Bartek J (2001) Inhibitory effects of 1alpha,25-dihydroxyvitamin D(3) on the G(1)-S phase-controlling machinery. Mol Endocrinol 15, 1370–1380.

    CAS  Google Scholar 

  • Jung CW, Kim ES, Seol JG, Park WH, Lee SJ, Kim BK, and Lee YY (1999) Antiproliferative effect of a vitamin D3 analog, EB1089, on HL-60 cells by the induction of TGFbeta receptor. Leuk Res 23, 1105–1112.

    CAS  Google Scholar 

  • Katayama ML, Pasini FS, Folgueira MA, Snitcovsky IM, and Brentani MM (2003) Molecular targets of 1,25(OH)2D3 in HC11 normal mouse mammary cell line. J Steroid Biochem Mol Biol 84, 57–69.

    CAS  Google Scholar 

  • Koga M, Eisman JA, and Sutherland RL (1988) Regulation of epidermal growth factor receptor levels by 1,25- dihydroxyvitamin D3 in human breast cancer cells. Cancer Res 48, 2734–2739.

    CAS  Google Scholar 

  • Koli K and Keski-Oja J (2000) 1alpha,25-dihydroxyvitamin D3 and its analogues down-regulate cell invasionassociated proteases in cultured malignant cells. Cell Growth Differ 11, 221–229.

    CAS  Google Scholar 

  • Krishnan AV, Shinghal R, Raghavachari N, Brooks JD, Peehl DM, and Feldman D (2004) Analysis of vitamin Dregulated gene expression in LNCaP human prostate cancer cells using cDNA microarrays. Prostate 59, 243–251.

    CAS  Google Scholar 

  • Krishnan AV, Swami S, and Feldman D (2010a) Vitamin D and breast cancer: Inhibition of estrogen synthesis and signaling. J Steroid Biochem Mol Biol 121, 343–348.

    CAS  Google Scholar 

  • Krishnan AV, Swami S, Peng L, Wang J, Moreno J, and Feldman D (2010b) Tissue-selective regulation of aromatase expression by calcitriol: Implications for breast cancer therapy. Endocrinology 151, 32–42.

    CAS  Google Scholar 

  • Lazzaro G, Agadir A, Qing W, Poria M, Mehta RR, Moriarty RM, Das Gupta TK, Zhang XK, and Mehta RG (2000) Induction of differentiation by 1alpha-hydroxyvitamin D(5) in T47D human breast cancer cells and its interaction with vitamin D receptors. Eur J Cancer 36, 780–786.

    CAS  Google Scholar 

  • Lee HJ, Ji Y, Paul S, Maehr H, Uskokovic M, and Suh N (2007) Activation of bone morphogenetic portein signaling by a Gemini vitamin D3 analog is mediated by the Ras/ protein kinase Ca pathway. Cancer Res 67, 11840–11847.

    CAS  Google Scholar 

  • Lee HJ, Liu H, Goodman C, Ji Y, Maehr H, Uskokovic M, Notterman D, Reiss M, and Suh N (2006a) Gene expression profiling changes induced by a novel Gemini Vitamin D derivative during the progression of breast cancer. Biochem Pharmacol 72, 332–343.

    CAS  Google Scholar 

  • Lee HJ, Paul S, Atalla N, Thomas PE, Lin X, Yang I, Buckley B, Lu G, Zheng X, Lou YR, Conney AH, Maehr H, Adorini L, Uskokovic M, and Suh N (2008) Gemini vitamin D analogues inhibit estrogen receptor-positive and estrogen receptor-negative mammary tumorigenesis without hypercalcemic toxicity. Cancer Prev Res (Phila) 1, 476–484.

    CAS  Google Scholar 

  • Lee HJ, So JY, DeCastro A, Smolarek A, Paul S, Maehr H, Uskokovic M, and Suh N (2010) Gemini vitamin D analog suppresses ErbB2-positive mammary tumor growth via inhibition of ErbB2/AKT/ERK signaling. J Steroid Biochem Mol Biol 121, 408–412.

    CAS  Google Scholar 

  • Lee HJ, Wislocki A, Goodman C, Ji Y, Ge R, Maehr H, Uskokovic M, Reiss M, and Suh N (2006b) A novel vitamin D derivative activates bone morphogenetic protein signaling in MCF10 breast epithelial cells. Mol Pharmacol 69, 1840–1848.

    CAS  Google Scholar 

  • Li F, Ling X, Huang H, Brattain L, Apontes P, Wu J, Binderup L, and Brattain MG (2005) Differential regulation of survivin expression and apoptosis by vitamin D3 compounds in two isogenic MCF-7 breast cancer cell sublines. Oncogene 24, 1385–1395.

    CAS  Google Scholar 

  • Losel R and Wehling M (2003) Nongenomic actions of steroid hormones. Nat Rev Mol Cell Biol 4, 46–56.

    Google Scholar 

  • Lundqvist J, Norlin M, and Wikvall K (2011) 1alpha,25- Dihydroxyvitamin D3 exerts tissue-specific effects on estrogen and androgen metabolism. Biochim Biophys Acta 1811, 263–270.

    CAS  Google Scholar 

  • Majewski S, Marczak M, Szmurlo A, Jablonska S, and Bollag W (1995) Retinoids, interferon alpha, 1,25-dihydroxyvitamin D3 and their combination inhibit angiogenesis induced by non-HPV-harboring tumor cell lines. RAR alpha mediates the antiangiogenic effect of retinoids. Cancer Lett 89, 117–124.

    CAS  Google Scholar 

  • Mantell DJ, Owens PE, Bundred NJ, Mawer EB, and Canfield AE (2000) 1 alpha,25-dihydroxyvitamin D(3) inhibits angiogenesis in vitro and in vivo. Circ Res 87, 214–220.

    CAS  Google Scholar 

  • Mathiasen IS, Lademann U, and Jaattela M (1999) Apoptosis induced by vitamin D compounds in breast cancer cells is inhibited by Bcl-2 but does not involve known caspases or p53. Cancer Res 59, 4848–4856.

    CAS  Google Scholar 

  • Matilainen M, Malinen M, Saavalainen K, and Carlberg C (2005) Regulation of multiple insulin-like growth factor binding protein genes by 1alpha,25-dihydroxyvitamin D3. Nucleic Acids Res 33, 5521–5532.

    CAS  Google Scholar 

  • Mawer EB, Walls J, Howell A, Davies M, Ratcliffe WA, and Bundred NJ (1997) Serum 1,25-dihydroxyvitamin D may be related inversely to disease activity in breast cancer patients with bone metastases. J Clin Endocrinol Metab 82, 118–122.

    CAS  Google Scholar 

  • McGaffin KR, Acktinson LE, and Chrysogelos SA (2004) Growth and EGFR regulation in breast cancer cells by vitamin D and retinoid compounds. Breast Cancer Res Treat 86, 55–73.

    CAS  Google Scholar 

  • Mehta RG, Moriarty RM, Mehta RR, Penmasta R, Lazzaro G, Constantinou A, and Guo L (1997) Prevention of preneoplastic mammary lesion development by a novel vitamin D analogue, 1alpha-hydroxyvitamin D5. J Natl Cancer Inst 89, 212–218.

    CAS  Google Scholar 

  • Mehta RR, Bratescu L, Graves JM, Green A, and Mehta RG (2000) Differentiation of human breast carcinoma cells by a novel vitamin D analog: 1alpha-hydroxyvitamin D5. Int J Oncol 16, 65–73.

    CAS  Google Scholar 

  • Nagpal S, Na S, and Rathnachalam R (2005) Noncalcemic actions of vitamin D receptor ligands. Endocr Rev 26, 662–687.

    CAS  Google Scholar 

  • Narvaez CJ, Byrne BM, Romu S, Valrance M, and Welsh J (2003) Induction of apoptosis by 1,25-dihydroxyvitamin D3 in MCF-7 Vitamin D3-resistant variant can be sensitized by TPA. J Steroid Biochem Mol Biol 84, 199–209.

    CAS  Google Scholar 

  • Narvaez CJ and Welsh J (2001) Role of mitochondria and caspases in vitamin D-mediated apoptosis of MCF-7 breast cancer cells. J Biol Chem 276, 9101–9107.

    CAS  Google Scholar 

  • Norman AW (2006) Minireview: Vitamin D receptor: New assignments for an already busy receptor. Endocrinology 147, 5542–5548.

    CAS  Google Scholar 

  • Norman AW, Mizwicki MT, and Norman DP (2004) Steroidhormone rapid actions, membrane receptors and a conformational ensemble model. Nat Rev Drug Discov 3, 27–41.

    CAS  Google Scholar 

  • Oda K, Matsuoka Y, Funahashi A, and Kitano H (2005) A comprehensive pathway map of epidermal growth factor receptor signaling. Mol Syst Biol 1, 2005. 0010.

    Google Scholar 

  • Oh YS, Kim EJ, Schaffer BS, Kang YH, Binderup L, MacDonald RG, and Park JH (2001) Synthetic lowcalcaemic vitamin D(3) analogues inhibit secretion of insulin-like growth factor II and stimulate production of insulin-like growth factor-binding protein-6 in conjunction with growth suppression of HT-29 colon cancer cells. Mol Cell Endocrinol 183, 141–149.

    CAS  Google Scholar 

  • Osborn JL, Schwartz GG, Smith DC, Bahnson R, Daye R, and Trump DL (1995) Phase II trial of oral 1,25- dihydroxyvitamin D (calcitriol) in hormone refractory prostate cancer. Urol Oncol 1, 195–198.

    CAS  Google Scholar 

  • Oster H and Leitges M (2006) Protein kinase C alpha but not PKCzeta suppresses intestinal tumor formation in ApcMin/ + mice. Cancer Res 66, 6955–6963.

    CAS  Google Scholar 

  • Palmer HG, Sanchez-Carbayo M, Ordonez-Moran P, Larriba MJ, Cordon-Cardo C, and Munoz A (2003) Genetic signatures of differentiation induced by 1alpha,25- dihydroxyvitamin D3 in human colon cancer cells. Cancer Res 63, 7799–7806.

    CAS  Google Scholar 

  • Paranjape T, Heneghan H, Lindner R, Keane FK, Hoffman A, Hollestelle A, Dorairaj J, Geyda K, Pelletier C, Nallur S, Martens JW, Hooning MJ, Kerin M, Zelterman D, Zhu Y, Tuck D, Harris L, Miller N, Slack F, and Weidhaas J (2011) A 3’-untranslated region KRAS variant and triple-negative breast cancer: A case-control and genetic analysis Lancet Oncol 12, 377–386.

    CAS  Google Scholar 

  • Pazaitou-Panayiotou K, Kelesidis T, Kelesidis I, Kaprara A, Blakeman J, Vainas I, Mpousoulegas A, Williams CJ, and Mantzoros C (2007) Growth hormone-binding protein is directly and IGFBP-3 is inversely associated with risk of female breast cancer. Eur J Endocrinol 156, 187–194.

    CAS  Google Scholar 

  • Peehl DM, Shinghal R, Nonn L, Seto E, Krishnan AV, Brooks JD, and Feldman D (2004) Molecular activity of 1,25-dihydroxyvitamin D3 in primary cultures of human prostatic epithelial cells revealed by cDNA microarray analysis. J Steroid Biochem Mol Biol 92, 131–141.

    CAS  Google Scholar 

  • Peng L, Malloy PJ, and Feldman D (2004) Identification of a functional vitamin D response element in the human insulin-like growth factor binding protein-3 promoter Mol Endocrinol 18, 1109–1119.

    CAS  Google Scholar 

  • Peng L, Malloy PJ, Wang J, and Feldman D (2006) Growth inhibitory concentrations of androgens up-regulate insulinlike growth factor binding protein-3 expression via an androgen response element in LNCaP human prostate cancer cells. Endocrinology 147, 4599–4607.

    CAS  Google Scholar 

  • Peng L, Wang J, Malloy PJ, and Feldman D (2007) The role of insulin-like growth factor binding protein-3 in the growth inhibitory actions of androgens in LNCaP human prostate cancer cells. Int J Cancer 122, 558–566.

    Google Scholar 

  • Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, Fluge O, Pergamenschikov A, Williams C, Zhu SX, Lonning PE, Borresen-Dale AL, Brown PO, and Botstein D (2000) Molecular portraits of human breast tumours. Nature 406, 747–752.

    CAS  Google Scholar 

  • Polar MK, Gennings C, Park M, Gupta MS, and Gewirtz DA (2003) Effect of the vitamin D3 analog ILX 23-7553 on apoptosis and sensitivity to fractionated radiation in breast tumor cells and normal human fibroblasts. Cancer Chemother Pharmacol 51, 415–421.

    CAS  Google Scholar 

  • Prosser DE and Jones G (2004) Enzymes involved in the activation and inactivation of vitamin D. Trends Biochem Sci 29, 664–673.

    CAS  Google Scholar 

  • Reichel H, Koeffler HP, and Norman AW (1989) The role of the vitamin D endocrine system in health and disease. N Engl J Med 320, 980–991.

    CAS  Google Scholar 

  • Renehan AG, Harvie M, and Howell A (2006) Insulin-like growth factor (IGF)-I, IGF binding protein-3, and breast cancer risk: Eight years on. Endocr Relat Cancer 13, 273–278.

    CAS  Google Scholar 

  • Rochel N, Wurtz JM, Mitschler A, Klaholz B, and Moras D (2000) The crystal structure of the nuclear receptor for vitamin D bound to its natural ligand. Mol Cell 5, 173–179.

    CAS  Google Scholar 

  • Rossi AM, Capiati DA, Picotto G, Benassati S, and Boland RL (2004) MAPK inhibition by 1alpha,25(OH)2-Vitamin D3 in breast cancer cells. Evidence on the participation of the VDR and Src. J Steroid Biochem Mol Biol 89–90, 287–290.

    Google Scholar 

  • Schernhammer ES, Holly JM, Hunter DJ, Pollak MN, and Hankinson SE (2006) Insulin-like growth factor-I, its binding proteins (IGFBP-1 and IGFBP-3), and growth hormone and breast cancer risk in The Nurses Health Study II. Endocr Relat Cancer 13, 583–592.

    CAS  Google Scholar 

  • Silha JV, Sheppard PC, Mishra S, Gui Y, Schwartz J, Dodd JG, and Murphy LJ (2006) Insulin-like growth factor (IGF) binding protein-3 attenuates prostate tumor growth by IGFdependent and IGF-independent mechanisms. Endocrinology 147, 2112–2121.

    CAS  Google Scholar 

  • Simboli-Campbell M, Narvaez CJ, van Weelden K, Tenniswood M, and Welsh J (1997) Comparative effects of 1,25(OH)2D3 and EB1089 on cell cycle kinetics and apoptosis in MCF-7 breast cancer cells. Breast Cancer Res Treat 42, 31–41.

    CAS  Google Scholar 

  • Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van de Rijn M, Jeffrey SS, Thorsen T, Quist H, Matese JC, Brown PO, Botstein D, Eystein Lonning P, and Borresen-Dale AL (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98, 10869–10874.

    CAS  Google Scholar 

  • Stewart LV, Lyles B, Lin MF, and Weigel NL (2005) Vitamin D receptor agonists induce prostatic acid phosphatase to reduce cell growth and HER-2 signaling in LNCaP-derived human prostate cancer cells. J Steroid Biochem Mol Biol 97, 37–46.

    CAS  Google Scholar 

  • Stingl J and Caldas C (2007) Molecular heterogeneity of breast carcinomas and the cancer stem cell hypothesis. Nat Rev Cancer 7, 791–799.

    CAS  Google Scholar 

  • Stoica A, Saceda M, Fakhro A, Solomon HB, Fenster BD, and Martin MB (1999) Regulation of estrogen receptor-alpha gene expression by 1, 25-dihydroxyvitamin D in MCF-7 cells. J Cell Biochem 75, 640–651.

    CAS  Google Scholar 

  • Sundaram S, Beckman MJ, Bajwa A, Wei J, Smith KM, Posner GH, and Gewirtz DA (2006) QW-1624F2-2, a synthetic analogue of 1,25-dihydroxyvitamin D3, enhances the response to other deltanoids and suppresses the invasiveness of human metastatic breast tumor cells. Mol Cancer Ther 5, 2806–2814.

    CAS  Google Scholar 

  • Sundaram S, Chaudhry M, Reardon D, Gupta M, and Gewirtz DA (2000) The vitamin D3 analog EB 1089 enhances the antiproliferative and apoptotic effects of adriamycin in MCF-7 breast tumor cells. Breast Cancer Res Treat 63, 1–10.

    CAS  Google Scholar 

  • Sundaram S and Gewirtz DA (1999) The vitamin D3 analog EB 1089 enhances the response of human breast tumor cells to radiation. Radiat Res 152, 479–486.

    CAS  Google Scholar 

  • Swami S, Krishnan AV, and Feldman D (2000) 1alpha,25- Dihydroxyvitamin D3 down-regulates estrogen receptor abundance and suppresses estrogen actions in MCF-7 human breast cancer cells. Clin Cancer Res 6, 3371–3379.

    CAS  Google Scholar 

  • Swami S, Raghavachari N, Muller UR, Bao YP, and Feldman D (2003) Vitamin D growth inhibition of breast cancer cells: gene expression patterns assessed by cDNA microarray. Breast Cancer Res Treat 80, 49–62.

    CAS  Google Scholar 

  • Teicher BA (2006) Protein kinase C as a therapeutic target. Clin Cancer Res 12, 5336–5345.

    CAS  Google Scholar 

  • Tomii K, Tsukuda K, Toyooka S, Dote H, Hanafusa T, Asano H, Naitou M, Doihara H, Kisimoto T, Katayama H, Pass HI, Date H, and Shimizu N (2007) Aberrant promoter methylation of insulin-like growth factor binding protein-3 gene in human cancers. Int J Cancer 120, 566–573.

    CAS  Google Scholar 

  • Tong WM, Hofer H, Ellinger A, Peterlik M, and Cross HS (1999) Mechanism of antimitogenic action of vitamin D in human colon carcinoma cells: relevance for suppression of epidermal growth factor-stimulated cell growth. Oncol Res 11, 77–84.

    CAS  Google Scholar 

  • Townsend K, Banwell CM, Guy M, Colston KW, Mansi JL, Stewart PM, Campbell MJ, and Hewison M (2005a) Autocrine metabolism of vitamin D in normal and malignant breast tissue. Clin Cancer Res 11, 3579–3586.

    CAS  Google Scholar 

  • Townsend K, Evans KN, Campbell MJ, Colston KW, Adams JS, and Hewison M (2005b) Biological actions of extrarenal 25-hydroxyvitamin D-1alpha-hydroxylase and implications for chemoprevention and treatment. J Steroid Biochem Mol Biol 97, 103–109.

    CAS  Google Scholar 

  • Vargo-Gogola T and Rosen JM (2007) Modelling breast cancer: One size does not fit all. Nat Rev Cancer 7, 659–672.

    CAS  Google Scholar 

  • Verlinden L, Verstuyf A, Convents R, Marcelis S, Van Camp M, and Bouillon R (1998) Action of 1,25(OH)2D3 on the cell cycle genes, cyclin D1, p21 and p27 in MCF-7 cells. Mol Cell Endocrinol 142, 57–65.

    CAS  Google Scholar 

  • Verlinden L, Verstuyf A, Van Camp M, Marcelis S, Sabbe K, Zhao XY, De Clercq P, Vandewalle M, and Bouillon R (2000) Two novel 14-Epi-analogues of 1,25-dihydroxyvitamin D3 inhibit the growth of human breast cancer cells in vitro and in vivo. Cancer Res 60, 2673–2679.

    CAS  Google Scholar 

  • Vijayakumar S, Boerner PS, Mehta RR, Packianathan S, Mehta RG, and Das Gupta TK (2006) Clinical trials using chemopreventive vitamin D analogs in breast cancer. Cancer J 12, 445–450.

    CAS  Google Scholar 

  • von Lintig FC, Dreilinger AD, Varki NM, Wallace AM, Casteel DE, and Boss GR (2000) Ras activation in human breast cancer. Breast Cancer Res Treat 62, 51–62.

    Google Scholar 

  • Vrieling A, Hein R, Abbas S, Schneeweiss A, Flesch-Janys D, and Chang-Claude J (2011) Serum 25-hydroxyvitamin D and postmenopausal breast cancer survival: A prospective patient cohort study. Breast Cancer Res 13, R74.

    CAS  Google Scholar 

  • Welsh J (1994) Induction of apoptosis in breast cancer cells in response to vitamin D and antiestrogens. Biochem Cell Biol 72, 537–545.

    CAS  Google Scholar 

  • Whyte J, Bergin O, Bianchi A, McNally S, and Martin F (2009) Key signalling nodes in mammary gland development and cancer. Mitogen-activated protein kinase signalling in experimental models of breast cancer progression and in mammary gland development. Breast Cancer Res 11, 209.

    Google Scholar 

  • Wu G, Fan RS, Li W, Ko TC, and Brattain MG (1997) Modulation of cell cycle control by vitamin D3 and its analogue, EB1089, in human breast cancer cells. Oncogene 15, 1555–1563.

    CAS  Google Scholar 

  • Wu G, Fan RS, Li W, Srinivas V, and Brattain MG (1998) Regulation of transforming growth factor-beta type II receptor expression in human breast cancer MCF-7 cells by vitamin D3 and its analogues. J Biol Chem 273, 7749–7756.

    CAS  Google Scholar 

  • Yanagi Y, Suzawa M, Kawabata M, Miyazono K, Yanagisawa J, and Kato S (1999) Positive and negative modulation of vitamin D receptor function by transforming growth factorbeta signaling through smad proteins. J Biol Chem 274, 12971–12974.

    CAS  Google Scholar 

  • Yanagisawa J, Yanagi Y, Masuhiro Y, Suzawa M, Watanabe M, Kashiwagi K, Toriyabe T, Kawabata M, Miyazono K, and Kato S (1999) Convergence of transforming growth factorbeta and vitamin D signaling pathways on SMAD transcriptional coactivators. Science 283, 1317–1321.

    CAS  Google Scholar 

  • Yanase T, Suzuki S, Goto K, Nomura M, Okabe T, Takayanagi R, and Nawata H (2003) Aromatase in bone: Roles of Vitamin D3 and androgens. J Steroid Biochem Mol Biol 86, 393–397.

    CAS  Google Scholar 

  • Yang L, Yang J, Venkateswarlu S, Ko T, and Brattain MG (2001) Autocrine TGFbeta signaling mediates vitamin D3 analog-induced growth inhibition in breast cells. J Cell Physiol 188, 383–393.

    CAS  Google Scholar 

  • Yao S, Sucheston LE, Millen AE, Johnson CS, Trump DL, Nesline MK, Davis W, Hong CC, McCann SE, Hwang H, Kulkarni S, Edge SB, O’Connor TL, and Ambrosone CB (2011) Pretreatment serum concentrations of 25-hydroxyvitamin D and breast cancer prognostic characteristics: A case-control and a case-series study. PLoS One 6, e17251.

    CAS  Google Scholar 

  • Yin L, Grandi N, Raum E, Haug U, Arndt V, and Brenner H (2010) Meta-analysis: serum vitamin D and breast cancer risk. Eur J Cancer 46, 2196–2205.

    CAS  Google Scholar 

  • Zehnder D, Bland R, Williams MC, McNinch RW, Howie AJ, Stewart PM, and Hewison M (2001) Extrarenal expression of 25-hydroxyvitamin d(3)-1 alpha-hydroxylase. J Clin Endocrinol Metab 86, 888–894.

    CAS  Google Scholar 

  • Zhang X, Li P, Bao J, Nicosia SV, Wang H, Enkemann SA, and Bai W (2005) Suppression of death receptor-mediated apoptosis by 1,25-dihydroxyvitamin D3 revealed by microarray analysis. J Biol Chem 280, 35458–35468.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Jin Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, H.J. Vitamin D and breast cancer: Molecular communications. J Korean Soc Appl Biol Chem 54, 841–851 (2011). https://doi.org/10.1007/BF03253171

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03253171

Key words

Navigation