Advertisement

Sensitive spectrophotometric detection of dopamine, levodopa and adrenaline using surface plasmon resonance band of silver nanoparticles

  • M. R. Hormozi NezhadEmail author
  • J. Tashkhourian
  • J. Khodaveisi
Article

Abstract

A simple and effective procedure is proposed for spectrophotometric determination of catecholamines; Dopamine (1), L-Dopa (2) and Adrenaline (3). It was found that the reduction of Ag+ to silver nanoparticles (Ag-NPs) by these catecholamines in the presence of polyvinylpyrrolidone (PVP) as a stabilizing agent produced very intense surface plasmon resonance peak of Ag-NPs. The plasmon absorbance of the Ag-NPs allows the quantitative spectrophotometric detection of the catecholamines. The calibration curves derived from the changes in absorbance at λ = 440 nm were linear with concentration of Dopamine, Levodopa and Adrenaline in the range of 3.2×10−6− 2.0×10−5 M, 1.6×10−7 − 1.0×10−5 M, 1.5×10−6− 4.0×10−5 M, respectively. The detection limits (3σ) were 1.2×10−6 M, 8.6 ×10−8 M, 9.7 ×10−7 M for the Dopamine, L-Dopa and Adrenaline, respectively. The method was applied successfully to the determination of catecholamines in Ringer’s injection serum.

Keywords

Silver nanoparticles Catecholamines Surface plasmon band Spectrophotometric determination 

References

  1. [1]
    G.W. Paulson, Med. Hypoth. 38 (1992) 206.Google Scholar
  2. [2]
    H. Wisser, in: L. Thomas (Ed.), Labor und Diagnose: Indikation und Bewertung von Laborbefunden fur Medizinische Diagnostik, TH-Books, Frankfurt, 2000, p. 1062.Google Scholar
  3. [3]
    Q.M. Xue, Physiological and Pathological Chemistry of Nervous System, Science Press, Beijing, 1978, p. 102.Google Scholar
  4. [4]
    R.S. Chen, W.H Huang, H. Tong, Z.L. Wang, J.K. Cheng, Anal. Chem. 75 (2003) 6341.Google Scholar
  5. [5]
    C.R. Raj, T. Okajima, T. Shsaka, J. Electroanal. Chem. 543 (2002) 127.Google Scholar
  6. [6]
    M. Tsunoda, K. Imai, Anal Chim Acta 541 (2005) 13.Google Scholar
  7. [7]
    X.L. Zhu, P.N. Shaw, D.A. Barrett, Anal. Chim. Acta 478 (2003) 259.Google Scholar
  8. [8]
    M. Vlcková, M.A. Schwarz, J. Chromatogr. A 1142 (2007) 214.Google Scholar
  9. [9]
    M. Tsunoda, Anal. Bioanal. Chem. 386 (2006) 506.Google Scholar
  10. [10]
    M. Moini, C.L. Schultz, H. Mahmood, Anal. Chem. 75 (2003) 6282.Google Scholar
  11. [11]
    M.A. El-Sayed, Acc. Chem. Res. 34 (2001) 257.Google Scholar
  12. [12]
    A.C. Templeton, W.P. Wuelfing, R.W. Murray, Acc. Chem. Res. 33 (2000) 27.Google Scholar
  13. [13]
    Y. Sun, Y. Xia, Analyst 128 (2003) 686.Google Scholar
  14. [14]
    A.D. McFarland, R.P. Van Duyne, Nano Lett. 3 (2003) 1057.Google Scholar
  15. [15]
    T.R. Jensen, M. Duval Malinsky, C.L. Haynes, R.P. Van Duyne, J. Phys. Chem. B 104 (2000) 10549.Google Scholar
  16. [16]
    H. Wei, B. Li, J. Li, E. Wang and S. Dong, Chem. Commun., 36 (2007) 3735.Google Scholar
  17. [17]
    J. Liu, Y. Lu, J. Fluorescence 14 (2004) 343.Google Scholar
  18. [18]
    H. Otsuka, Y. Akiyama, Y. Nagasaki, K. Kataoka, J. Am. Chem. Soc. 123 (2001) 8226.Google Scholar
  19. [19]
    R. Baron, M. Zayats, I. Willner, Anal. Chem. 77 (2005) 1566.Google Scholar
  20. [20]
    L. Shang, S. Dong, Nanotechnology 19 (2008) 095502.Google Scholar
  21. [21]
    M.R. Hormozi Nezhad, M. Alimohammadi, J. Tashkhourian, S. Mehdi Razavian, Spectrochimica Acta: Part A 71 (2008) 199.Google Scholar
  22. [22]
    F.X. Zhang, L. Han, L.B. Israel, J.G. Daras, M.M. Maye, N.K. Ly, C.J. Zhong, Analyst 127 (2002) 462.Google Scholar
  23. [23]
    C.S. Thaxton, C.A. Mirkin, in: C.M. Niemeyer, C.A. Mirkin (Eds.), Nanobiotechnology, Wiley-VCH, Weinheim, 2004, pp. 288–307, and references cited therein.Google Scholar
  24. [24]
    W. Zhao, W. Chiuman, J.C.F. Lam, M.A. Brook and Y. Li, Chem. Commun., 36 (2007) 3729.Google Scholar
  25. [25]
    H.Y. Wang, Y.F. Li, C. Zhi Huang, Talanta 72 (2007) 1698.Google Scholar
  26. [26]
    D. Xiong, M. Chen, H. Li Chem. Commun., 7 (2008) 3729.Google Scholar
  27. [27]
    S.T. Dubas, V. Pimpan, Mater. Lett, (2008) Article In press.Google Scholar
  28. [28]
    C.L. Schofield, A.H. Haines, R.A. Field, D.A. Russell, Langmuir 22 (2006) 6707.Google Scholar
  29. [29]
    Y. Chen, J. Aveyard R. Wilson, Chem. Commun., 24 (2004) 2804.Google Scholar
  30. [30]
    S.T. Dubas, V. Pimpan, Talanta (2008) Article In press. [31]_J.S. Bradley, in “Clusters and Colloids” (G. Schmid, Ed.), p. 469. VCH, Weinheim, 1994Google Scholar
  31. [32]
    H. Bönnemann, K.S. Nagabhushana, in “Encyclopedia Nanoscience and Nanotechnology” (H. Singh Nalwa Ed.), Vol. 1, p. 779. ASP, 2004.Google Scholar
  32. [33]
    H. Wang, X. Qiao, J. Chena, X. Wang, S. Ding, Mater. Chem. Phys. 94 (2005) 449.Google Scholar
  33. [34]
    J.C. Miller, J.N. Miller, Statistics and Chemometrics for Analytical Chemistry, fourth ed., Prentice Hall, 2000Google Scholar

Copyright information

© Iranian Chemical Society 2010

Authors and Affiliations

  • M. R. Hormozi Nezhad
    • 1
    • 2
    Email author
  • J. Tashkhourian
    • 3
  • J. Khodaveisi
    • 3
  1. 1.Department of ChemistrySharif University of TechnologyTehranIran
  2. 2.Institute for Nanoscience and NanotechnologySharif University of TechnologyTehranIran
  3. 3.Department of Chemistry, Faculty of SciencesPersian Gulf UniversityBushehrIran

Personalised recommendations