Extraction and preconcentration capacity of bifunctionalized diamine-thiol polysiloxane immobilized ligand system towards some divalent cations

Abstract

Porous solid bi-organofunctionalized diamine-thiol polysiloxane immobilized ligand system of the general formula P-(CH2)3- X, (where P represents [Si-O]n siloxane network and X represents a mixture of diamine; -NH(CH)2NH2 and thiol; -SH functional groups) has been prepared by hydrolytic polycondensation of TEOS with a mixture of 3-mercaptopropyltrimethoxysilane and 3- (2-aminoethylimino)propyltrimethoxysilane agents. The ligand system was evaluated for extraction and preconcentartion of a series of divalent metal ions from aqueous solutions including: Co2+, Ni2+, Cu2+, Zn2+, Cd2+ and Pb2+. Both batch and dynamic methods were used to examine maximum sorption capacity. The maximum binding capacity followed the sequence; Cu2+ > Pb2+ > Cd2+ > Ni2+ > Zn2+ > Co2+ at pH 5.5. Measurement of variation of sorption of metal ions with temperature yielded negative values of ΔG° and positive values of ΔS° and ΔH° indicating a spontaneous and endothermic process of binding metal ions to the ligand system.

This is a preview of subscription content, log in to check access.

References

  1. [1]

    R.D. Wilken, Fresenius J. Anal. Chem. 342 (1992) 795.

    CAS  Google Scholar 

  2. [2]

    P.M. Padilha, L.A. de Melo Gomes, C.C.F. Padilha, J.C. Moreira, N.L. Dias Filho, Anal. Lett. 32 (1999) 1807.

    CAS  Google Scholar 

  3. [3]

    T. Pochinok, T. Synkova, T. Shekhovtsova, Z. Temerdashev, J. Anal. Chem. 62 (2007) 184.

    CAS  Google Scholar 

  4. [4]

    F. W. Oehme, Toxicity of Heavy Metals in the Environment, Marcel Dekker, New York, 1989.

    Google Scholar 

  5. [5]

    S.Y. Quek, D. Wase, C.F. Forster, Water SA 24 (1998) 251.

    CAS  Google Scholar 

  6. [6]

    G.R. Castro, I.L. Alcantara, P.S. Roldan, D.F. Bozano, P.M. Padilha, A.O. Florentino, J.C. Rocha, J. Mat. Res. 7 (2004) 329.

    Google Scholar 

  7. [7]

    C. Airoldi, M.R.M.C. Santos, J. Mater. Chem. 4 (1994) 1479.

    CAS  Google Scholar 

  8. [8]

    J.R. Deans, B.G. Dixon, Water Res. 26 (1992) 469.

    CAS  Google Scholar 

  9. [9]

    H.M. Freeman, Hazardous Waste Minimization, McGraw-Hill, New York, 1990.

  10. [10]

    J. MacNeil, D.E. McCoy, in: H.M. Freeman (Ed.), Hazardous Waste Minimization, McGraw-Hill, New York, 1989.

    Google Scholar 

  11. [11]

    A.A. Aguwa, C.N. Hass, in: H.M. Freeman (Ed.), Hazardous Waste Minimization, McGraw-Hill, New York, 1989.

    Google Scholar 

  12. [12]

    C.B. Amphlett, Inorganic Ion Exchangers, Elsevier, Publishing Co., Amsterdam, 1964.

    Google Scholar 

  13. [13]

    A. Clearfield, Inorganic Ion Exchange Materials, CRC Press, Boca Raton, Florida, 1982.

    Google Scholar 

  14. [14]

    A. Clearfield, G.H. Nancollas, R.H. Blessing, in: J.H. Marinsky, Y. Marcus (Ed.), Solvent Extraction and Ion Exchange, Marcel Dekker, New York, 1973.

    Google Scholar 

  15. [15]

    F.H. Elfferich, Ion Exchange, McGraw-Hill, New York, 1962.

    Google Scholar 

  16. [16]

    R.T. Lier, The Chemistry of Silica, Wiley, New York, 1979.

    Google Scholar 

  17. [17]

    I. Ahmed, R.V. Parish, J. Organomet. Chem. 452 (1993)

    Google Scholar 

  18. [18]

    I.M. El-Nahhal, B.A. El-Shetary, K.A.R. Salib, N.M. El-Ashgar, A.M. El-Hashash, Anal. Lett. 34 (2001) 2189.

    CAS  Google Scholar 

  19. [19]

    I.M. El-Nahhal, F.R. Zaggout, N.M. El-Ashgar, Anal. Lett. 34 (2001) 247.

    Google Scholar 

  20. [20]

    N.M. El-Ashgar, I.M. El-Nahhal, J. Dispersion Sci. Technol. 27 (2006) 7.

    Google Scholar 

  21. [21]

    R.V. Parish, D. Habibi, V. Mohammadi, J. Organomet. Chem. 369 (1989) 17.

    CAS  Google Scholar 

  22. [22]

    N.M. El-Ashgar, E.-J. Chem. 5 (2008) 107.

    Google Scholar 

  23. [23]

    H.M. El-Kurd, I.M. El-Nahhal, N.M. El-Ashgar, Phosphorus, Sulfur Silicon Relat. Elem. 180 (2005) 1657.

    CAS  Google Scholar 

  24. [24]

    S.M. Saadeh, N.M. El-Ashgar, I.M. El-Nahhal, M.M. Chehimi, J. Maquet, F. Babonneau, Appl. Organomet. Chem. 19 (2005) 759.

    CAS  Google Scholar 

  25. [25]

    N.M. El-Ashgar, I.M. El-Nahhal, J. Sol-Gel Sci. Technol. 34 (2005) 165.

    CAS  Google Scholar 

  26. [26]

    N.M. El-Ashgar, I.M. El-Nahhal, M.M. Chehimi, F. Babonneau, J. Livage, Monatsh. Chem. 137 (2005) 263.

    Google Scholar 

  27. [27]

    N.M. El-Ashgar, I.M. El-Nahhal, J. Sol-Gel Sci. Technol. 27 (2006) 7.

    Google Scholar 

  28. [28]

    I.M. El-Nahhal, N.M. El-Ashgar, J. Livage, M.M. Chehimi, F. Babonneau, Mater. Lett. 61 (2007) 4553.

    Google Scholar 

  29. [29]

    I.M. El-Nahhal, N.M. El-Ashgar, J. Organomet. Chem. 692 (2007) 2861.

    CAS  Google Scholar 

  30. [30]

    N.M. El-Ashgar, I.M. El-Nahhal, M.M. Chehimi, F. Babonneau, J. Livage, Mater. Lett. 61 (2007) 4553.

    CAS  Google Scholar 

  31. [31]

    N.M. El-Ashgar, Anal. Chem. Indian J. 7 (2008) 509.

    CAS  Google Scholar 

  32. [32]

    W. Wasiak, Chromatographia 41 (1995) 107.

    CAS  Google Scholar 

  33. [33]

    J. Cermak, M. Kvicalova, V. Blechta, M. Capka, Z. Bastl, J. Organomet. Chem. 509 (1996) 77.

    CAS  Google Scholar 

  34. [34]

    P.M. Price, J.H. Clark, D.J. Jacquarrie, J. Chem. Soc. Dalton Trans. (2000) 101.

    Google Scholar 

  35. [35]

    M. Pesavento, R. Biesuz, M. Gallorini, A. Profumo, Anal. Chem. 65 (1993) 2522.

    CAS  Google Scholar 

  36. [36]

    I.S. Khatib, R.V. Parish, J. Organomet. Chem. 369 (1989) 9.

    CAS  Google Scholar 

  37. [37]

    J.J. Yang, I.M. El-Nahhal, I.S. Chung, G.E. Maciel, J. Non-Cryst. Solids 209 (1997) 19.

    CAS  Google Scholar 

  38. [38]

    J.J. Yang, I.M. El-Nahhal, I.S. Chuang, G.E. Maciel, J. Non-Cryst. Solids 212 (1997) 281.

    CAS  Google Scholar 

  39. [39]

    M.E. Mahmoud, Anal. Lett. 29 (1996) 1791.

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to N. M. El-Ashgar.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

El-Ashgar, N.M. Extraction and preconcentration capacity of bifunctionalized diamine-thiol polysiloxane immobilized ligand system towards some divalent cations. JICS 6, 823–830 (2009). https://doi.org/10.1007/BF03246176

Download citation

Keywords

  • Immobilized-polysiloxanes
  • Metal ions extraction
  • Thermodynamic parameters
  • Diamine-thiol