Structure and morphology of nanostructured zinc oxide thin films Prepared by dip-vs. spin-coating methods

Abstract

In this study, we use dipping and spinning methods to coat glass slides with sol-gel ZnO thin films, composed of zinc acetate dihydrate, monoethanolamine (MEA), de-ionized water and isopropanol. The effect of the annealing temperature on the structural morphology and optical properties of these films is investigated. These ZnO films were preheated at 275 °C for 10 min and annealed either at 350, 450 or 550 °C for 60 min. As-deposited films, formed by amorphous zinc oxide-acetate submicron particles, are transformed into a highly-oriented ZnO after thermal treatment. The surface morphology, phase structure and optical properties of the thin films were investigated by scanning electron microscopy, X-ray diffraction (XRD) and optical transmittance. Both techniques produced nanostructured ZnO thin films with well-defined orientation. The annealed films were transparent in the visible range with an absorption edge at about 375 nm and a transmittance of ca 85–90% with an average diameter of 40 nm. XRD results show the film was composed of polycrystalline wurtzite, with a preferential c-axis orientation of (002) and a single sharp XRD peak at 34.40, corresponding to the hexagonal ZnO. The grain size is increased by the annealing temperature. Both coating techniques create sol-gel ZnO films with the potential for application as transparent electrodes in optic and electronic devices.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    L.C. Klein, A.S. Edelstein, R.C. Cammarata (Eds.), Processing of Nanostructured Sol-Gel Materials, Nanomaterials: Synthesis, Properties, and Applications, Institute of Physics Publishing, Bristol and Philadelphia, 1996, pp. 147–164.

    Google Scholar 

  2. [2]

    G.M. Chow, Chemical Synthesis and Processing of Nanostructured Powders and Films, NATO Advanced Study Institute on Nanostructured Materials Science and Technology, St. Petersburg, Russia (Aug. 1997), NATO ASI Series 3. High Technology-Vol. 50, Kluwer Publications, Netherlands, 1998.

    Google Scholar 

  3. [3]

    L.H. Larry, K.W. Jon, Chem. Rev. 90 (1990) 33.

    Google Scholar 

  4. [4]

    M.J. Alam, D.C. Cameron, Surf. Coat. Technol. 142 (2001) 776.

    Google Scholar 

  5. [5]

    C. Shaoqiang, Z. Jian, F. Xiao, W. Xiaohua, L. Laiqiang, S. Yanling, X. Qingsong, W. Chang, Z. Jianzhong, Z. Ziqiang, Appl. Surf. Sci. 241 (2005) 384.

    Google Scholar 

  6. [6]

    K. Keis, C. Bauer, G. Boschloo, A. Hagfeldt, K. Westermark, H. Rensmo, H. Siegbahn, J. Photochem. Photobiol. A 148 (2002) 57.

    CAS  Google Scholar 

  7. [7]

    Y.S. Kim, W.P. Tai, S.J. Shu, Thin Solid Films 491 (2005) 153.

    CAS  Google Scholar 

  8. [8]

    F. Peng, H. Wang, H. Yu, S. Chen, Mater. Res. Bull. 41 (2006) 2123.

    CAS  Google Scholar 

  9. [9]

    M. Suchea, S. Christoulakis, K. Moschovis, N. Katsarakis, G. Kiriakidis, Thin Solid Films 515 (2006) 551.

    CAS  Google Scholar 

  10. [10]

    R. Ghosh, G.K. Paul, D. Basak, Mater. Res. Bull. 40 (2005) 1905.

    CAS  Google Scholar 

  11. [11]

    Y.S. Kim, W.P. Tai, S.J. Shu, Thin Solid Films 491 (2005) 153.

    CAS  Google Scholar 

  12. [12]

    M.H. Aslan, A.Y. Oral, E. Men-Sur, A.G. Ula, E. Ba- Saran, Sol. Energy Mater. Sol. Cells 82 (2004) 543.

    CAS  Google Scholar 

  13. [13]

    A.E. Jimenez Gonzalez, J.A. Soto Urueta, Sol. Energy Mater. Sol. Cells 52 (1998) 345.

    Google Scholar 

  14. [14]

    B.S. Li, Y.C. Liu, D.Z. Shen, J.Y. Zhang, Y.M. Lu, X.W. Fan, J. Cryst. Growth 249 (2003) 179.

    CAS  Google Scholar 

  15. [15]

    B.M. Atae, A.M. Bagamadova, A.M. Djabrailov, Thin Solid Films 260 (1995) 19.

    Google Scholar 

  16. [16]

    V.V. Siva Kumar, F. Singh, A. Kumar, D.K. Avasthi, Nucl. Instrum. Methods Phys. Res., Sect. B 244 (2006) 91.

    CAS  Google Scholar 

  17. [17]

    A. Ashour, M.A. Kaid, N.Z. El-Sayed, A.A. Ibrahim, Appl. Surf. Sci. 252 (2006) 7844.

    CAS  Google Scholar 

  18. [18]

    Y. Natsume, H. Ssakata, T. Hirayama, Phys. Statuse Solidi. 148 (1995) 485.

    CAS  Google Scholar 

  19. [19]

    W. Shena, Y. Zhaoa, T. Zhang, Thin Solid Films 483 (2005) 382.

    Google Scholar 

  20. [20]

    X. Liu, Z. Jin, Z. Liu, K. Yu, S. Bu, Appl. Surf. Sci. 252 (2006) 8668.

    CAS  Google Scholar 

  21. [21]

    S. Fujihara, C. Sasaki, T. Kimura, Appl. Surf. Sci. 180 (2001) 341.

    CAS  Google Scholar 

  22. [22]

    Z. Jiwei, Z. Liangying, Y. Xi, Ceram. Int. 26 (2000) 883.

    CAS  Google Scholar 

  23. [23]

    Y.S. Kim, W.P. Tai, S.J. Shu, Thin Solid Films 491 (2005) 153.

    CAS  Google Scholar 

  24. [24]

    D. Bao, H. Gu, A. Kuang, Thin Solid Films 312 (1998) 37.

    CAS  Google Scholar 

  25. [25]

    B. Houng, C. Huang, Surf. Coat. Technol. 201 (2006) 3188.

    CAS  Google Scholar 

  26. [26]

    U.N. Maiti, P.K. Ghosh, S. Nandy, K.K. Chattopadhyay, Physica. B 387 (2007) 103.

    CAS  Google Scholar 

  27. [27]

    S. Rahimnejad, S. Rahman Setayesh, M.R. Gholami, J. Iran. Chem. Soc. 5 (2008) 367.

    CAS  Google Scholar 

  28. [28]

    Q.-Z. Zhai, P. Wang, J. Iran. Chem. Soc. 5 (2008) 268.

    Article  CAS  Google Scholar 

  29. [29]

    Z.Y. Ning, S.H. Cheng, S.B. Ge, Y. Chao, Z.Q. Gang, Y.X. Zhang, Z.G. Liu, Thin Solid Films 307 (1997) 50.

    CAS  Google Scholar 

  30. [30]

    V. Lujala, J. Skarp, M. Tammenmaa, T. Suntola, Appl. Surf. Sci. 82/83 (1994) 34.

    CAS  Google Scholar 

  31. [31]

    K. Kaiya, N. Yoshii, N. Takahashi, T. Nakamura, J. Mater. Sci. Lett. 19 (2000) 2089.

    CAS  Google Scholar 

  32. [32]

    S. Chaisitsak, T. Sugiyama, A. Yamada, M. Konagai, J. Appl. Phys. 38 (1999) 4989.

    CAS  Google Scholar 

  33. [33]

    M.H. Habibi, N. Talebian, Dyes Pigm. 73 (2007) 186.

    CAS  Google Scholar 

  34. [34]

    M.H. Habibi, N. Talebian, J.-H. Choi, Dyes Pigm. 73 (2007) 103.

    CAS  Google Scholar 

  35. [35]

    M.H. Habibi, N. Talebian, J.-H. Choi, Thin Solid Films 515 (2006) 1461.

    CAS  Google Scholar 

  36. [36]

    M.H. Habibi, M. Khaledi Sardashti, J. Nanomater. ID 356765 (2008).

    Google Scholar 

  37. [37]

    M.G. Lagally, J. Appl. Phys. 32 (1993) 1493. [38]_S. Fujihara, C. Sasaki, T. Kimura, Appl. Surf. Sci. 180 (2001) 341.

    Google Scholar 

  38. [39]

    H.Y. Bae, G.M. Choi, Sens. Actuators B 55 (1999) 47.

    Google Scholar 

  39. [40]

    T. Yamamoto, T. Shiosaki, A. Kawabata, J. Appl. Phys. 51 (1980) 3113.

    CAS  Google Scholar 

  40. [41]

    H.Z. Wu, K.M. He, D.J. Qiu, D.M. Huang, J. Cryst. Growth 217 (2000) 131.

    CAS  Google Scholar 

  41. [42]

    Y. Igasaki, J. Cryst. Growth 116 (1992) 357.

    CAS  Google Scholar 

  42. [43]

    S. Amirhaghi, V. Cracium, D. Cracium, J. Elders, W. Boyd, Microelectron. Eng. 25 (1994) 321.

    CAS  Google Scholar 

  43. [44]

    C. Shaoqiang, Z. Jian, F. Xiao, W. Xiaohua, L. Laiqiang, S. Yanling, X. Qingsong, W. Chang, Z. Jianzhong, Z. Ziqiang, Appl. Surf. Sci. 241 (2005) 384.

    Google Scholar 

  44. [45]

    T. Schuler, M.A. Aegerter, Thin Solid Films 351 (1999) 125.

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. H. Habibi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Habibi, M.H., Khaledi Sardashti, M. Structure and morphology of nanostructured zinc oxide thin films Prepared by dip-vs. spin-coating methods. JICS 5, 603–609 (2008). https://doi.org/10.1007/BF03246140

Download citation

Keywords

  • Nanostructure
  • Sol-gel
  • Thin film
  • Spin coating
  • Dip coating
  • ZnO