Skip to main content
Log in

Synthesis, spectroscopic and electrochemical characteristics of a novel Schiff-base from saccharin and tryptophan

  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

In the present work, a novel Schiff-base was synthesized by the reaction of saccharin with tryptophan and characterized by elemental analysis as well as UV-Vis, FT-IR, 1H NMR spectroscopic data. The voltammetric behavior of Schiff-base was also studied on the hanging mercury drop electrode (HMDE) by using Square-Wave Voltammetry (SWV) and Cyclic Voltammetry (CV) techniques. The voltammograms of the Schiff-base exhibited two irreversible reduction peaks in Britton-Robinson buffer (pH 7.0–10.0) for the potential range from 0.0 V to −1.4 V. These peaks which appeared at more positive potentials than the reduction peaks of tryptophan and saccharin, may be assigned to the cathodic reductions of C-N+ and >C=N- moieties of Schiffbase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. http://www.websters-onlinedictionary. org/tr/tryptophan.html

  2. K.D. Altria, P. Harkin, M.G. Hindson, J. Chromatogr. B 686 (1996) 103.

    CAS  Google Scholar 

  3. H.H. Hussey, JAMA 229 (1974) 1474.

    CAS  Google Scholar 

  4. S. Çakoir, E. Biçer, A. Eleman, Trans. Met. Chem. 26 (2001) 89.

    Google Scholar 

  5. M.R. Weihrauch, V. Diehl, H. Bohlen, Medizinische Klinik. 96 (2001) 670.

    CAS  Google Scholar 

  6. N. Suzuki, H. Suzuki, Cancer Res. 55 (1995) 4253.

    CAS  Google Scholar 

  7. J. Zurlo, R.A. Squire, J. Natl. Cancer Inst. 90 (1998) 2.

    CAS  Google Scholar 

  8. S.M. Teleb, J. Argent. Chem. Soc. 92 (2004) 31.

    CAS  Google Scholar 

  9. I.C. Munro, C.A. Moodie, D. Krewski, H.C. Grice, Toxicol. Appl. Pharmacol. 32 (1975) 513.

    CAS  Google Scholar 

  10. K.M.A. Malic, S.Z. Haider, M.A. Hossain, M. Hursthouse, Acta Crystallogr., Sect. C 40 (1984) 1696.

    Google Scholar 

  11. S. Çakoir, İ. Bulut, J. Electroanal. Chem. 518 (2002) 41.

    Google Scholar 

  12. S. Çakoir, İ. Bulut, P. Naumov, E. Biçer, O. Çakoir, J. Mol. Struc. 560 (2001) 1.

    Google Scholar 

  13. B. Witkop, L.K. Ramachandran, Metabolism 13 (1964) 1016.

    CAS  Google Scholar 

  14. R.A. Morton, G.A.J. Pitt, Biochem. J. 59 (1955) 128.

    CAS  Google Scholar 

  15. I. Fridovich, F.H. Westheimer, J. Am. Chem. Soc. 84 (1962) 3208.

    CAS  Google Scholar 

  16. E. Grazi, R.T. Rowley, T. Cheng, O. Tchola, B.L. Horecker, Biochem. Biophys. Res. Commun. 9 (1962) 38.

    CAS  Google Scholar 

  17. D.R. Williams, Chem Rev. 72 (1972) 203.

    CAS  Google Scholar 

  18. M.A. Ali, A.H. Mirza, T.B.S.A. Ravoof, P.V. Bernhardt, Polyhedron 23 (2004) 2031.

    Google Scholar 

  19. T.B.S.A. Ravoof, K.A. Crouse, M.I.M. Tahir, A.R. Cowley, M.A. Ali, Polyhedron. 26 (2007) 1159.

    CAS  Google Scholar 

  20. K. Rengaraj, B. Sivasankar, M. Anbu, M. Palanichamy, J. Chem. Sci. 103 (1991) 707.

    CAS  Google Scholar 

  21. A.K. Singh, R.V. Aruna, J. Photoch. Photobio. A 89 (1995) 247.

    CAS  Google Scholar 

  22. H. Nagata, M. Doi, M. Inoue, T. Ishida, M. Kamigauchi, M. Sugiura, A. Wakahara, J. Chem. Soc., Perkin Trans. 2 (1994) 983.

    Google Scholar 

  23. J.G.H. Du Preez, T.I.A. Gerber, P.J. Fourie, A.J. Van Wyk, J. Coord. Chem. 13 (1984) 173.

    Google Scholar 

  24. M.L. Rodríguez, C. Ruiz-Pérez, F.V. Rodríguez- Romero, M.S. Palacios, P. Martín-Zarza, Acta Cryst. C 46 (1990) 1414.

    Google Scholar 

  25. S. Çakoir, M. Odabaşoğlu, E. Biçer, Z. Yazar, J. Mol. Struc. 918 (2009) 81.

    Google Scholar 

  26. S. Çakoir, E. Biçer, O. Çakoir, Electrochem. Commun. 2 (2000) 124.

    Google Scholar 

  27. A.M. Beltagi, M.M. Ghoneim, A. Radi, J. Pharmaceut. Biomed. Anal. 27 (2002) 795.

    CAS  Google Scholar 

  28. R.S. Nicholson, I. Shain, Anal. Chem. 36 (1964) 706.

    CAS  Google Scholar 

  29. A.J. Bard, L.R. Faulkner, Electrochemical Methods, Wiley, New York, 1980, p. 52.

    Google Scholar 

  30. X.-Y. Hu, Y. Xiao, H.-Y. Chen, J. Electroanal. Chem. 466 (1999) 26.

    CAS  Google Scholar 

  31. A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications, Wiley, 1980, Translated by Gu, L.Y. et al., Chemical Industry Press, Beijing, 1986, p. 598.

    Google Scholar 

  32. P. Qiu, Y.N. Ni, Chinese Chem. Lett. 17 (2006) 225.

    CAS  Google Scholar 

  33. P. Zuman, Topics in Organic Polarography, Plenum Press, London, 1970.

    Book  Google Scholar 

  34. S.M. Sabry, M.H. Barary, M.H. Abdel-Hay, T.S. Belal, J. Pharmaceut. Biomed. Anal. 34 (2004) 509.

    CAS  Google Scholar 

  35. P. Zuman, The Elucidation of Organic Electrode Processes, Academic Pres, New York, 1969.

    Google Scholar 

  36. H. Lund, in: H. Lund, M.M. Baizer (Eds.), Reduction of Azomethine Compounds, Organic Electrochemistry, an Introduction and a Guide, 3rd ed., Marcel Dekker, New York, 1991, pp. 465–466.

    Google Scholar 

  37. L.F. Capitán-Vallvey, M.C. Valencia, E.A. Nicolás, Food Addit. Contam. 21 (2004) 32.

    Google Scholar 

  38. E.L. Smith, R.L. Hill, I.R. Lehman, R.J. Lefkowitz, P. Handler, A. White, Principles of Biochemistry: General Aspects, 7th ed., McGraw-Hill Book Company, London, 1985, pp. 34,35.

    Google Scholar 

  39. D.B. Wetlaufer, Adv. Protein Chem. 17 (1962) 303.

    CAS  Google Scholar 

  40. S.S. Al-Shihry, Scientific Journal of King Faisal University (Basic and Applied Sciences). 6 (2005) 77.

    Google Scholar 

  41. H. Yang, G.B. Luo, K. Pallop, T.M. Louie, I. Rech, S. Cova, L.Y. Xun, X.S. Xie, Science 302 (2003) 262.

    CAS  Google Scholar 

  42. C.R. Carubelli, A.M.G. Massabni, S.R. de A. Leite, J. Braz. Chem. Soc. 8 (1997) 597.

    CAS  Google Scholar 

  43. T. Tanaka, B. Chem. Soc. Jpn. 45 (1972) 2113.

    CAS  Google Scholar 

  44. L. Racane, V. Tralić-Kulenović, G. Karminski-Zamola, L. Fišer-Jakić, Monatsh. Chem. 126 (1995) 1375.

    CAS  Google Scholar 

  45. L. Ma, Y. Li, L. Li, Y. Wu, R. Buchet, Y. Ding, Spectrochim. Acta Part A 72 (2009) 306.

    Google Scholar 

  46. L.C. Snoek, R.T. Kroemer, M.R. Hockridge, J.P. Simons, Phys. Chem. Chem. Phys. 3 (2001) 1819.

    CAS  Google Scholar 

  47. X. Cao, G. Fischer, J. Phys. Chem. A 103 (1999) 9995.

    CAS  Google Scholar 

  48. D. Lin-Vien, N.B. Colthup, W.G. Fateley, J.G. Grasselli (Eds.), The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules, Academic Press, San Diego, 1991.

    Google Scholar 

  49. B.B. Ivanova, Spectrochim. Acta Part A 64 (2006) 931.

    Google Scholar 

  50. P. Naumov, G. Jovanoski, Vib. Spectrosc. 24 (2000) 201.

    CAS  Google Scholar 

  51. Z. Yueng, Transit. Metal Chem. 19 (1994) 446.

    Google Scholar 

  52. M.A. Nabar, A.N. Khosla, J. Alloy. Compd. 225 (1995) 377.

    CAS  Google Scholar 

  53. L.J. Bellamy, The Infrared Spectra of Complex Molecules, Wiley, New York, 1959.

    Google Scholar 

  54. P.R. Selvakannan, S. Mandal, S. Phadtare, A. Gole, R. Pasricha, S.D. Adyanthaya, M. Sastry, J. Colloid Interf. Sci. 269 (2004) 97.

    CAS  Google Scholar 

  55. M.-C. Corbeil, A.L. Beauchamp, Can. J. Chem. 66 (1988) 2458.

    CAS  Google Scholar 

  56. V. Ramesh, T. Brown, Biochem. J. 315 (1996) 895.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Çakır.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Çakır, S., Biçer, E. Synthesis, spectroscopic and electrochemical characteristics of a novel Schiff-base from saccharin and tryptophan. JICS 7, 394–404 (2010). https://doi.org/10.1007/BF03246025

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03246025

Keywords

Navigation