Skip to main content
Log in

Molecular dynamics simulation of potassium along the liquid-vapor coexistence curve

  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

The applicability of pair potential functions to liquid alkali metals is questionable. On the one hand, some recent reports in the literature suggest the validity of two-parameter pair-wise additive Lennard-Jones (LJ) potentials for liquid alkali metals. On the other hand, there are some reports suggesting the inaccuracy of pair potential functions for liquid metals. In this work, we have performed extensive molecular dynamics simulations of vapor-liquid phase equilibria in potassium to check the validity of the proposed LJ potentials and to improve their accuracy by changing the LJ exponents and taking into account the temperaturedependencies of the potential parameters. We have calculated the orthobaric liquid and vapor densities of potassium using LJ (12–6), LJ (8.5–4) and LJ (5–4), effective pair potential energy functions. The results show that using an LJ (8.5–4) potential energy function with temperature-independent parameters, ε and σ, is inadequate to account for the vapor-liquid coexistence properties of potassium. Taking into account the temperature-dependencies of the LJ parameters, ε(T) and σ(T), we obtained the densities of coexisting liquid and vapor potassium in a much better agreement with experimental data. Changing the magnitude of repulsive and attractive contributions to the potential energy function shows that a two-parameter LJ (5–4) potential can well reproduce the densities of liquid and vapor potassium. The results show that LJ (5–4) potential with temperature-dependent parameters produces the densities of liquid and vapor potassium more accurately, compared to the results obtained using LJ (12–6) and LJ (8.5–4) potential energy functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N.B. Vargaftik, V.S. Yargin, in: R.W. Ohse (Ed.), IUPAC Handbook of Thermodynamic and Transport Properties of Alkali Metals, Blackwell Scientific, Oxford, 1985.

    Google Scholar 

  2. J.W. Hastie, E.R. Plante, D.W. Bonnell, NBS Monogr, IR 81 (1981) 2279.

    Google Scholar 

  3. K.N. Khanna, A. Quayoum, Phys. Chem. Liquids 24 (1991) 127.

    CAS  Google Scholar 

  4. V.I. Kolesnichenko, Sib. Fiz.-Tekh. Zh. (1993) 35.

    Google Scholar 

  5. H. Eslami, A. Boushehri, Fluid Phase Equilib. 152 (1998) 235

    CAS  Google Scholar 

  6. H. Eslami, Int. J. Thermophys. 20 (1999) 1575.

    CAS  Google Scholar 

  7. H. Eslami, S. Sheikh, A. Boushehri, High Temp.-High Press. 33 (2001) 237.

    CAS  Google Scholar 

  8. H. Eslami, S. Sheikh, A. Boushehri, High Temp.-High Press. 33 (2001) 725.

    CAS  Google Scholar 

  9. G. Raabe, R.J. Sadus, J. Chem. Phys. 119 (2003) 6691.

    CAS  Google Scholar 

  10. G. Raabe, B.D. Todd, R.J. Sadus, J. Chem. Phys. 123 (2005) 34511.

    Google Scholar 

  11. R.A. Johnson, D.J. Oh, J. Mat. Res. 4 (1989) 1195.

    CAS  Google Scholar 

  12. V.F. Kozhevnikov, S.P. Naurzakov, A.P. Senchenkov, J. Moscow Phys. Soc. 1 (1991) 171.

    CAS  Google Scholar 

  13. M.H. Ghatee, M. Sanchooli, Fluid Phase Equilib. 214 (2003) 197.

    CAS  Google Scholar 

  14. M.H. Ghatee, M.H. Mousazadeh, A. Boushehri, Int. J. Thermophys. 19 (1998) 317.

    CAS  Google Scholar 

  15. J.A. Barker, D. Henderson, Rev. Mod. Phys. 48 (1976) 587.

    CAS  Google Scholar 

  16. M. Tanaka, J. Phys. F: Metal Phys. 10 (1980) 2581.

    CAS  Google Scholar 

  17. J.M.G. Miranda, V. Torrag, J. Phys. F: Met. Phys. 13 (1983) 281.

    Google Scholar 

  18. D.L. Price, K.S. Singwi, M.P. Tosi, Phys. Rev. B 2 (1970) 2983.

    Google Scholar 

  19. D.L. Price, Phys. Rev. A 4 (1971) 358.

    Google Scholar 

  20. M. Shimoji, Liquid Metals, London, Academic, 1977.

    Google Scholar 

  21. A. Rahman, Phys. Rev. Lett. 32 (1974) 52.

    CAS  Google Scholar 

  22. A. Rahman, Phys. Rev. A 9 (1974) 1667.

    CAS  Google Scholar 

  23. J.E. Lennard-Jones, Proc. Royal Soc. (London) 106A (1924) 441.

    Google Scholar 

  24. E. Lennard-Jones, Proc. Royal Soc. (London) 106A (1924) 463.

    Google Scholar 

  25. F. London, Z. Phys. Chem. B 11 (1930) 222.

    CAS  Google Scholar 

  26. F. Hensel, Philos. Trans. Royal Soc. London, Ser. A 356 (1998) 97.

    CAS  Google Scholar 

  27. W.C. Pilgrim, F. Hensel, J. Phys. Chem. B 105 (2001) 11256.

    Google Scholar 

  28. M.H. Ghatee, F. Niroomand-Hosseini, J. Chem. Phys. 126 (2007) 014302.

    Google Scholar 

  29. H.J.C. Berendsen, J.P.M. Postma, W.F. Van Gunsteren, A. DiNola, J.R. Haak, J. Chem. Phys. 81 (1984) 3684.

    CAS  Google Scholar 

  30. H. Eslami, J. Nucl. Mater. 325 (2004) 188.

    CAS  Google Scholar 

  31. G.A. Parsafar, E.A. Mason, Phys. Rev. B 49 (1994) 3049.

    CAS  Google Scholar 

  32. G.A. Parsafar, N. Farzi, B. Najafi, Int. J. Thermophys. 18 (1997) 1197.

    CAS  Google Scholar 

  33. S. Alavi, Int. J. Thermophys. 18 (1997) 1035.

    CAS  Google Scholar 

  34. R.D. Murphy, Phys. Rev. A 15 (1977) 1188.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Eslami.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eslami, H., Mozaffari, F. & Moghadasi, J. Molecular dynamics simulation of potassium along the liquid-vapor coexistence curve. JICS 7, 308–317 (2010). https://doi.org/10.1007/BF03246015

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03246015

Keywords

Navigation