Advertisement

Journal of the Iranian Chemical Society

, Volume 1, Issue 1, pp 10–19 | Cite as

Conical cavitands as second coordination spheres and protecting environments. Towards metal-centred, intra-cavity reactions

  • D. Armspach
  • I. Bagatin
  • E. Engeldinger
  • C. Jeunesse
  • J. Harrowfield
  • M. Lejeune
  • D. Matt
Review

Abstract

Metallocavitands are coordination compounds based on rigidified molecular cavities which possess at least one entry. Those in which the metal centre is rigidly held above the entrance are particularly promising for the study of host-guest interactions between metal-bonded substrates and the internal part of a cavity. Such systems also open the way to highly selective intra-cavity reactions. The present review focusses on conical cavities derived from calixarenes and cyclodextrins and examines their possible use as second coordination sphere ligands.

Keyword

Metallocavitands Calixarenes Cyclodextrins Supramolecular catalysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. M. Lehn, Supramolecular Chemistry: Concepts and Perspectives; Wiley & Sons: New York, 1995.CrossRefGoogle Scholar
  2. [2]
    L.F. Lindoy, The Chemistry of Macrocyclic Ligand Complexes, Cambridge University Press: Cambridge, 1991.Google Scholar
  3. [3]
    F. Vögtle, Supramolecular Chemistry: An Introduction; Wiley & Sons, New York, 1993.Google Scholar
  4. [4]
    W. Verboom, in: Z. Asfari, V. Böhmer, J. Harrowfield, J. Vicens (Eds.), Calixarenes 2001, Kluwer Academic Publishers, Dordrecht, 2001.Google Scholar
  5. [5]
    D.M. Rudkevich, Bull. Chem. Soc. Jpn. 75 (2002) 393.Google Scholar
  6. [6]
    D.M. Rudkevich, J. Rebek, Jr. Eur. J. Org. Chem. (1999) 1991.Google Scholar
  7. [7]
    I. Thondorf, A. Shivanyuk, V. Böhmer, in: Z. Asfari, V. Böhmer, J. Harrowfield, J. Vicens (Eds.), Calixarenes 2001, Kluwer Academic Publishers, Dordrecht, 2001.Google Scholar
  8. [8]
    C.J. Easton, S.F. Lincoln, Modified Cyclodextrins, Imperial College Press, London, 1999.Google Scholar
  9. [9]
    A.E. Rowan, J.A.A. W. Elemans, R.J.M. Nolte, Acc. Chem. Res. 32 (1988) 995.Google Scholar
  10. [10]
    M. Kölbel, F.M. Menger, Adv. Mater. 13 (2001) 1115.Google Scholar
  11. [11]
    F.N. Diederich, Cyclophanes (Monographs in Supramolecular Chemistry), The Royal Society of Chemistry, London, 1994.Google Scholar
  12. [12]
    L. Mandolini, R. Ungaro (Eds.) Calixarenes in Action, Imperial College Press, London, 2000.CrossRefGoogle Scholar
  13. [13]
    D.J. Cram, Angew. Chem., Int. Ed., Engl. 27 (1988) 1009.Google Scholar
  14. [14]
    Z. Asfari, J. Harrowfield, M.I. Ogden, J. Vicens, A.L. White, Angew. Chem., Int. Ed. Engl. 30 (1991) 854.Google Scholar
  15. [15]
    C. Loeber, C. Wieser, D. Matt, A. De Cian, A. Fischer, L. Toupet, Bull. Soc. Chim. Fr. 132 (1995) 166.Google Scholar
  16. [16]
    C. Wieser, D. Matt, A. Fischer, A. Harriman, J. Chem. Soc., Dalton Trans. (1997) 2391.Google Scholar
  17. [17]
    C. Jeunesse, C. Dieleman, S. Steyer, D. Matt, J. Chem. Soc., Dalton Trans. (2001) 881.Google Scholar
  18. [18]
    I. Bagatin, D. Matt, H. Thönnessen, P.G. Jones, Inorg. Chem. 38 (1998) 1585.Google Scholar
  19. [19]
    E. Engeldinger, D. Armspach, D. Matt, L. Toupet, M. Wesolek, C. R. Chimie 5 (2002) 359.Google Scholar
  20. [20]
    C.B. Dieleman, D. Matt, I. Neda, R. Schmutzler, A. Harriman, R.Yaftian, Chem. Commun. (1999) 1911.Google Scholar
  21. [21]
    D. Armspach, D. Matt, Chem. Comm. (1999) 1073.Google Scholar
  22. [22]
    M. Lejeune, C. Jeunesse, D. Matt, N. Kyritsakas, R. Welter, J.-P. Kintzinger, J. Chem. Soc., Dalton Trans. (2002) 1642.Google Scholar
  23. [23]
    C. Wieser-Jeunesse, D. Matt, A. De Cian, Angew. Chem. Int. Ed. 37 (1998) 2861.Google Scholar
  24. [24]
    E. Engeldinger, D. Armspach, D. Matt, P.G. Jones, Chem. Eur. J. 9 (2003) 3091.Google Scholar
  25. [25]
    E. Engeldinger, D. Armspach, D. Matt, P.G. Jones, R. Welter, Angew. Chem., Int. Ed. Engl. 41 (2002) 2593.Google Scholar
  26. [26]
    R. Breslow, S. Dong, Chem. Rev. 98 (1998) 1997.Google Scholar
  27. [27]
    H.K.A.C. Coolen, P.W.N.M. van Leeuwen, R.J.M. Nolte, Angew. Chem., Int. Ed. Engl. 31 (1992) 905.Google Scholar
  28. [28]
    M.T. Reetz, S.R. Waldvogel, Angew. Chem. Int. Ed., Engl. 36 (1997) 865.Google Scholar
  29. [29]
    J.A.A.W. Elemans, E.J.A. Bijsterveld, A. E. Rowan, R.J.M. Nolte, Chem. Comm. (2000) 2443.Google Scholar
  30. [30]
    D. Armspach, D. Matt, F. Peruch, P. Lutz, Eur. J. Inorg. Chem. (2003) 805.Google Scholar
  31. [31]
    G.J.P. Britovsek, V.C. Gibson, B.S. Kimberley, P.J. Maddox, S.J. McTavish, G. A. Solan, A.J.P. White, D.J. Williams, Chem. Commun. 1998 (1998) 849.Google Scholar
  32. [32]
    O. Sénèque, M.-N. Rager, M. Giorgi, O. Reinaud, J. Am. Chem. Soc. 122 (2000) 6183.Google Scholar

Copyright information

© Iranian Chemical Society 2004

Authors and Affiliations

  • D. Armspach
    • 1
  • I. Bagatin
    • 1
  • E. Engeldinger
    • 1
  • C. Jeunesse
    • 1
  • J. Harrowfield
    • 1
  • M. Lejeune
    • 1
  • D. Matt
    • 1
  1. 1.Contribution from the Laboratoire de Chimie Inorganique Moléculaire, UMR 7513 CNRSUniversité Louis PasteurStrasbourgFrance

Personalised recommendations