Skip to main content
Log in

Atomic-scale modeling of radiation damage by SAS

  • Modeling Irradiation Effect
  • Overview
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Stochastic annealing simulations provide a way of exploring the evolution of displacement damage created by irradiation over large time and distance scales while retaining explicit information on the spatial distribution of individual defects. In this article, the various stages of defect production in displacement cascades and the models that are applicable at each stage are discussed. The role of stochastic annealing simulations as a link between molecular dynamics and reaction-rate theory is illustrated by simulations of defect production in cascades in copper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.S. Averback T. Diaz de la Rubia, and R. Benedek, Nucl. Inst. Meth., B33 (1988), p. 693.

    Google Scholar 

  2. T. Diaz de la Rubia and M.W. Gtrinan, Mat. Sci. Forum, 97-99 (1992), p. 23.

    Google Scholar 

  3. M.J. Norgett, M.T. Robinson, and I.M. Torrens, Nucl. Eng. Design, 33 (1975), p. 50.

    Google Scholar 

  4. M.T. Robinson, DAFS Quarterly Progress Report, U.S. Department of Energy, OOE/ET-0065/9 (1980), p. 54.

    Google Scholar 

  5. H.L. Heinisch and B.N. Singh, Phil. Mag. A, 67 (1993), p. 407.

    Google Scholar 

  6. H.L. Heinisch, J. Nucl. Mater., 117 (1983), p. 46.

    CAS  Google Scholar 

  7. H.L. Heinisch and B.N. Singh, J. Nucl. Mater., in press.

  8. R.W. Balluffi, J. Nucl. Mater., 69-70 (1978), p. 240.

    CAS  Google Scholar 

  9. M.J. Sabochick, S. Yip, and N.Q. Lam, J. Phys. F Met. Phys., 18 (1988), p. 349.

    CAS  Google Scholar 

  10. M.J. Sabochick and S. Yip, J. Phys. F Met. Phys., 18 (1988), p. 1689.

    CAS  Google Scholar 

  11. N.Q. Lam, N.V. Doan, and L. Dagens. J. Phys. F Met. Phys., 15 (1985), p. 799.

    CAS  Google Scholar 

  12. H.R. Schober and R. Zeller. J. Nucl. Mater., 69-70 (1978), p. 176.

    Google Scholar 

  13. H. Trinkaus, B.N. Singh, and Aj.E. Foreman, J. Nucl. Mater., 206 (1993), p. 200.

    CAS  Google Scholar 

  14. J.W. Corbett, R.B. Smith, and R.M. Walker, Phys. Rev., 114 (1959), p. 1452.

    CAS  Google Scholar 

  15. C.J. Meechan and J.N. Brinkman, Phys. Rev., 103 (1956), p. 1193.

    CAS  Google Scholar 

  16. J.W. Corbett, Electron Radiation Damage in Semiconductors and Metals, Solid State Physics, suppl. 7, ed. F. Seitz and D. Turnbull (New York: Academic Press, 1966), p. 219.

    Google Scholar 

  17. C.H. Woo and B.N. Singh, Phil. Mag. A, 65 (1992), p. 889.

    Google Scholar 

  18. H.L. Heinisch, Radial Effects Defects Solids, 113 (1990), p. 53.

    Google Scholar 

  19. H.L. Heinisch, Phil. Mag. A, 45 (1982), p. 1085.

    CAS  Google Scholar 

  20. M. Alurralde, A. Caro, and M. Victoria, J. Nucl. Mater., 183 (1991), p. 33.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heinisch, H.L. Atomic-scale modeling of radiation damage by SAS. JOM 48, 38–41 (1996). https://doi.org/10.1007/BF03223266

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03223266

Keywords

Navigation