Skip to main content
Log in

Primary damage formation in irradiated materials

  • Math and Material
  • Overview
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Recent improvements in computer technology and the interatomic potentials used to describe atomic systems have broadly advanced the state of the art in displacement cascade simulation using the method of molecular dynamics. Molecular dynamics simulations involving more than one million atoms have been carried out in order to study cascades that were initiated at energies up to 40 ke V. The results of these simulations are discussed in the context of their impact on the understanding of the microstructural evolution and mechanical property changes that ensue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F.A. Garner, “Overview of the Swelling Behavior of 316 Stainless Steel,” Optimizing Materials for Nuclear Applications, ed. F.A. Garner, D.S. Gelles, and F.W. Wiffen (Warrendale, PA: TMS, 1984), pp. 1l1–141.

    Google Scholar 

  2. J.A. Wang, F.B.K. Kam, and F.W. Stallman, “The Embrittlement Data Base (EDB) and Its Applications,” Effects of Radiation on Materials, ASTMSTP 1270, ed. D.S. Gelles et al. (Philadelphia, PA: ASTM, 1996), pp. 500–521.

    Google Scholar 

  3. R.E. Stoller, “Pressure Vessel Embrittlement Predictions Based on a Composite Model of Copper Precipitation and Point Defect Clustering,” Effects of Radiation on Materials, ASTM STP 1270, ed. D.S. Gelles et al. (Philadelphia, PA: ASTM, 1996), pp. 25–58.

    Google Scholar 

  4. For an example, see the proceedings of the bienniel international Symposia on the Effects of Radiation on Materials, published in a series of special technical publications by the ASTM, Philadelphia. The most recent in this series are STP 1046 (1989), STP l125 (1992), STP l175 (1993), and STP 1270 (1996).

  5. W.J. Phythian et al., J. Nucl. Mater., 223 (1995), pp. 245–261.

    CAS  Google Scholar 

  6. R.E. Stoller, “Molecular Dynamics Simulations of High Energy Cascades in Iron,” Microstructure of Irradiated Materials, ed. I.M. Robertson et al. (Pittsburgh, PA: MRS, 1995), pp. 21–26; and R.E. Stoller, Oak Ridge National Laboratory, unpublished research.

    Google Scholar 

  7. J.A. Brinkman, J. Appl. Phys., 25 (1954), pp. 961–969.

    CAS  Google Scholar 

  8. A.F. Tasch, Nucl. Inst. and Meth. in Physics Research, B74 (1993), pp. 3–6.

    CAS  Google Scholar 

  9. M.-A. Nicolet and S.T. Picraux, eds., Ion Mixing and Surface Layer Alloying (Park Ridge, NJ: Noyes Publications, 1984).

    Google Scholar 

  10. M.J. Norgett, M.T. Robinson, and I.M. Torrens, Nucl. Eng. and Des., 33 (1975), pp. 50–54; see also M.J. Norgett, M.T. Robinson, and I.M. Torrens “ASTME693, Standard Practice for Characterizing Neutron Exposures in Ferritic Steels in Terms of Displacements per Atom (dpa),” Annual Bookof ASTM Standards, vol. 12.02 (Philadelphia, PA: ASTM, 1996).

    Google Scholar 

  11. “ASTM E521, Standard Practice for Neutron Radiation Damage Simulation by Charged-Particle Irradiation,” Annual Book of ASTM Standards, vol. 12.02 (Philadelphia, PA: ASTM,1996).

  12. L.A. Beaven, R.M. Scanlan, and D.N. Seidman, The Defect Structure of Depleted Zones in Irradiated Tungsten, U.S. AEC report NYO-3504-50, Cornell University, Ithaca, NY (1971).

    Google Scholar 

  13. C.A. English and M.L. Jenkins, Mater. Sci. Forum, 15-18 (1987), pp. 1003–1022.

    CAS  Google Scholar 

  14. M.L. Jenkins, M.A. Kirk and W.J. Phythian, J. Nucl. Mater., 205 (1993), pp. 16–30.

    CAS  Google Scholar 

  15. M.A. Kirk, “Production of Defects in Metals by Collision Cascades: TEM Experiments,” Microstructure of Irradiated Materials, ed. I.M. Robertson et al. (Pittsburgh, PA: MRS, 1995), pp. 47–56.

    Google Scholar 

  16. J.B. Gibson et al., Phys. Rev., 120 (1960), p. 1229.

    CAS  Google Scholar 

  17. J.R. Beeler, Jr., “Computer Simulation of Radiation-Induced Void Nucleation and Growth in Metals,” Radiation-Induced Voids in Metals, U.S. AEC CONF-710601 (1972), pp. 684–738.

    Google Scholar 

  18. A.J.E. Foreman, C.A. English, and W.J. Phythian, Phil. Mag., A66 (1992), pp. 655–669.

    Google Scholar 

  19. T. Diaz de la Rubia and M.W. Guinan, Mater. Sci. Forum, 97-99 (1992), pp. 23–42.

    Google Scholar 

  20. R.S. Averback, J. Nucl. Mater., 216 (1994), pp. 49–62.

    CAS  Google Scholar 

  21. J.B. Adams et al., J. Nucl. Mater., 216 (1994), pp. 265–274.

    CAS  Google Scholar 

  22. I.M. Torrens and M.T. Robinson, “Computer Simulation of Atomic Displacement Cascades in Metals,” Radiation-Induced Voids in Metals, U.S. AEC CONF-710601 (1972), pp. 739–756.

    Google Scholar 

  23. M.T. Robinson, J. Nucl. Mater., 216 (1994), pp. 1–28.

    CAS  Google Scholar 

  24. M.Q. Finnis and J.E. Sinclair, Phil. Mag., A50 (1984), pp. 45–55; and M.Q. Finnis and J.E. Sinclair Erratum, Phil. Mag., A53 (1986), p. 161.

    Google Scholar 

  25. A.F. Calder and D.J. Bacon, J. Nucl. Mat., 207 (1993), pp. 25–45.

    CAS  Google Scholar 

  26. M.W. Finnis, “MOLDY6—A Molecular Dynamics Program for Simulation of Pure Metals,” AERE R-13182, U.K.AE.A. Harwell Laboratory (1988).

  27. D.J. Bacon et al., Nucl. Instr. and Meth. in Physics Research, B102 (1995), pp. 37–46.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stoller, R.E. Primary damage formation in irradiated materials. JOM 48, 23–27 (1996). https://doi.org/10.1007/BF03223261

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03223261

Keywords

Navigation