Skip to main content
Log in

Critical current and microstructure in oxide superconductors

  • High-Tc Superconductor
  • Overview
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Critical current density (Jc) in the presence of a magnetic field is the property that currently limits many applications of the high-critical-temperature oxide superconductors. Poor current transmission at grain boundaries and weak flux pinning are responsible for the low critical current densities observed in bulk materials. Since 1986, substantial progress has been made both in understanding the microstructural factors affecting Jc and in developing practical fabrication methods. Much of the fundamental understanding has been obtained from studies of YBa2Cu3O7−x while the bismuth and thallium-based compounds appear to offer greater potential as the basis for the first practical conductors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Heine et al., Appl. Phys. Lett., 55 (1991), p. 2441.

    Google Scholar 

  2. R.L. Peterson and J. W. Ekin, Physica C, 157 (1989), p. 325.

    CAS  Google Scholar 

  3. J. Clem, Physica C, 153–155 (1990), p. 50.

    Google Scholar 

  4. S. Nakahara et al., J. Cryst. Growth, 85 (1987), p. 639.

    CAS  Google Scholar 

  5. D.M. Kroeger et al., Interfacial Structure, Properties and Design, ed. M.H. Yoo, W.A.T. Clark, and C.L. Briant (Pittsburgh, PA: MRS, 1988), p. 521.

    Google Scholar 

  6. P.E. Batson et al., Proceedings of the 46th Annual Meeting of the Electron Microscopy Society of America, ed. G.W. Bailey (San Francisco, CA: San Francisco Press, 1988), p. 878.

    Google Scholar 

  7. S.E. Babcock et al., Physica C, 152 (1988), p. 25.

    CAS  Google Scholar 

  8. Y.M. Chiang, J.A.S. Ikeda, and A. Roshko, Research Update, 1988—Ceramic Superconductors II, ed. M.F. Yan (Westerville, OH: ACerS, 1988), p. 607.

    Google Scholar 

  9. D.M. Kroeger et al., J. Appl. Phys., 64 (1989), p. 331.

    Google Scholar 

  10. D.M. Kroeger, JOM, 41(I) (1989), pp. 14–17.

    Article  CAS  Google Scholar 

  11. K.B. Alexander et al., Physica C, 180 (1991), p. 337.

    CAS  Google Scholar 

  12. D.R Clarke, T.M. Shaw, and D. Dimos, J. Amer. Cer. Soc., 72 (1989), p. 1103.

    CAS  Google Scholar 

  13. T.K. Worthington et al., Physica C (153–155) (1988), p. 32.

    Google Scholar 

  14. D. Dimos et al., Phys. Rev. Lett., 61 (1988), p. 219

    CAS  Google Scholar 

  15. D. Dimos, P. Chaudhari, and J. Mannhart, Phys. Rev. B. 41 (1990), p. 4038.

    CAS  Google Scholar 

  16. J.G. Ossandon, Ph. D. Thesis (1991), University of Tennessee, Knoxville, TN.; J.G. Ossandon et al., to be published in Phys. Rev. B (1992).

    Google Scholar 

  17. S.E. Babcock et al., Nature, 347 (1990), p. 167; D.C. Larbalestier et al., Physica C, (185–189) (1991), p. 351.

    CAS  Google Scholar 

  18. D.E. Farrell et. al., Phys. Rev. B, 36 (1987), p. 4025.

    CAS  Google Scholar 

  19. R.H. Arendt et al., High- Temperature Superconductors, ed. M.B. Brodsky et al. (Pittsburgh, PA: MRS, 1988), p. 203.

    Google Scholar 

  20. J.W. Ekin, H.R. Hart, and A.R. Gaddipiti, J. Appl. Phys., 68 (1990), p. 2285.

    CAS  Google Scholar 

  21. J.E. Tkaczyk et al., J. Mater. Res., 7 (1992), p. 1.

    Google Scholar 

  22. S.E. Babcock and D.C. Larbalestier, J. Maler. Res., 5 (1990), p. 919.

    CAS  Google Scholar 

  23. S. Jin et al., Phys. Rev. B, 37 (1988), p. 7850.

    CAS  Google Scholar 

  24. M. Murakami et al., Jpn. J. Appl. Phys., 28 (1989), p. 1189.

    CAS  Google Scholar 

  25. K. Salama et al., App. Phys. Lett., 54 (1989), p. 2353.

    Google Scholar 

  26. P.J. McGinn et al., Physica C, 165 (1990), p. 480.

    CAS  Google Scholar 

  27. A. Goyal et al., Physica C, 182 (1991), p. 203.

    CAS  Google Scholar 

  28. V. Selvamanickam and K. Salama, Appl. Phys. Lett., 57 (1990), p. 1575.

    CAS  Google Scholar 

  29. M. Murakami, Mod. Phys. Lett. B, 4 (1990), p. 163.

    CAS  Google Scholar 

  30. A.P. Malozemoff, High Temperature Superconducing Compounds II. ed. S.H. Whang, A. Dasgupta, and R. Laibowitz (Warrendale, PA: TMS, 1990), p. 3.

    Google Scholar 

  31. K.B. Alexander et al., Phys. Rev. B, 46 (1992), p. 5622.

    Google Scholar 

  32. D. K. Christen et al., Proceedings of the International Workshop on Superconductivity (Milford, MA: CPS Superconductors, 1992), p. 181.

    Google Scholar 

  33. A. Goyal et al., unpublished work (1992).

  34. A Goyal et al., unpublished work (1992).

  35. A. Goyal et al., J. Appl. Phys., 71 (1991), p. 2363.

    Google Scholar 

  36. A. Goyal et al., Physica C, 183 (1991), pp. 221–233.

    CAS  Google Scholar 

  37. T. Izumi, Y. Shiohara, and Y. Nakamura, Proceedings of the International Workshop on Superconductivity (Japan: ISTEC, 1992), p. 280.

    Google Scholar 

  38. I. Hirabayasshi, Proc. of the Int. Workshop on Superconductivity, p. 154.

  39. H. Wang et al., Appl. Phys. Lett., 57 (1990), p. 2495.

    CAS  Google Scholar 

  40. Y. Zhu et al., J. Mater. Res., 6 (1991), p. 2506.

    Google Scholar 

  41. T. Hikata et al., Jpn. J. Appl. Phys. 28 (1989), p. 1024.

    Google Scholar 

  42. K. Sato et al.. IEEE Trans. on Magn. MAG-27 (1991), p. 1231; K. Sato et al., J. Appl. Phys., 70 (1991), p. 6484.

    Google Scholar 

  43. M. Ueyama et al., Jpn. J. Appl. Phys., 30 (1991), p. 1271.

    Google Scholar 

  44. J. Kase, et al., J. Appl. Phys., 29 (1990), p. L1096.

    CAS  Google Scholar 

  45. N. Uno et al. (Paper presented at International Symposium on Superconductivity Ibaraki, Japan, 1989).

    Google Scholar 

  46. R. Flukiger et al., IEEE Trans. on Mag., MAG-27 (1991), p. 1258; R. F1ukiger et al., to be published in Supercond. Sci & Tech. (1992).

    Google Scholar 

  47. M. Wilhelm et al., Physica C, 185–189 (1991), p. 2399.

    Google Scholar 

  48. P. Haldar et al., Appl. Phys. Lett., to be published.

  49. M. Maley et al., Phys. Rev. B, 45 (1992), p. 7566.

    CAS  Google Scholar 

  50. Y. Feng et al., Physica C, 192 (1992), p. 293.

    CAS  Google Scholar 

  51. S. Jin et al., Appl. Phys. Lett., 29 (1991), p. 868.

    Google Scholar 

  52. S. X. Dou et al., Supercond. Sci. & Tech., 3 (1990), p. 138.

    CAS  Google Scholar 

  53. A. Umezawa et al., preprint, submitted to Physica C (1992).

    Google Scholar 

  54. Y. Feng et al., to be published in Appl. Phys. Lett. (1992).

    Google Scholar 

  55. Y. Yamada et al., Physica C, 185–189 (1991), p. 2483.

    Google Scholar 

  56. M. Wilhelm, H. W. Neumuller, and G. Res, Physica (185–189 (1991) p. 2399.

    Google Scholar 

  57. K. Lay, AIP Conf. Proceedings, ed. Y.H. Kao et al. (New York: American Institute of Physics, 1991), p. 119.

    Chapter  Google Scholar 

  58. R.H. Arendt et al., Physica C, 176 (1991), p. 131.

    CAS  Google Scholar 

  59. L.N. Bulaevskii et al., Phys. Rev. B, 45 (1992), p. 2545.

    Google Scholar 

  60. T. Doi et al., Physica C, 183 (1991), p. 67; T. Doi et al. (Paper presented at the 1991 MRS Fall Meeting, Boston, MA, 2–5 December 1991).

    CAS  Google Scholar 

  61. J.A. Deluca et al., (Paper presented at the 1992 MRS Spring Meeting, San Francisco, CA, 22–26 April 1992).

    Google Scholar 

  62. M.T. Tachiki and S. Takahashi, Solid State Commu., 70 (1989), p. 291.

    CAS  Google Scholar 

  63. Z.L. Wang, A. Goyal, and D.M. Kroeger, submitted to Phys. Rev. B (1992); Z.L. Wang et al. (Paper presented at the 1992 MRS Spring Meeting, San Francisco, CA, 22–16 April 1992); A. Goyal et al., in extended abstracts of thelntemational Workshop on Superconductivity (Japan: ISTEC, 1992), p. 365.

    Google Scholar 

  64. M. Murakami et al., Cryogenics, 30 (1990), p. 390.

    CAS  Google Scholar 

  65. S. Jin et al.. Physica C, 181 (1991), p. 57–62

    CAS  Google Scholar 

  66. A. Goyal et al., unpublished work (1992).

  67. K.A. Muller, M. Takaashige, and J.D. Bednorz, Phys. Rev. Lett., 58 (1987), p. 1143.

    CAS  Google Scholar 

  68. Y. Yeshurun and A.P. Malozemoff, Phys. Rev. Lett., 60 (1988), p. 2202.

    CAS  Google Scholar 

  69. Y. Xu et al., Phys. Rev. B, 42 (1990), p. 8756.

    CAS  Google Scholar 

  70. T.T.M. Palstra et al., Phys. Rev. B, 43 (1991), p. 3756.

    Google Scholar 

  71. P.H. Kes et al., Phys. Rev. Lett. 64 (1990), p. 1063.

    CAS  Google Scholar 

  72. J.R Clem, Phys. Rev. B, 43 (1991), p. 7837.

    Google Scholar 

  73. D.H. Kim et al., Physica C, 177 (1991), p. 431.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kroeger, D.M., Goyal, A. Critical current and microstructure in oxide superconductors. JOM 44, 42–47 (1992). https://doi.org/10.1007/BF03223171

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03223171

Keywords

Navigation