Skip to main content
Log in

The magnetic detection of material properties

  • Nondestructive Evaluation
  • Overview
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Because of the nature of ferromagnetism, the magnetic properties of a material can provide useful information about other material properties. Forexample, magnetic-hysteresis parameters and Barkhausen-effect measurements are affected by the microstructure of materials and by applied or residual stresses. Considerable work has shown that magnetic hysteresis and the Barkhausen effect can be used to investigate the condition of materials or components by nondestructive means. Such investigations can be carried out fairly easily under laboratory conditions; adapting the methods to in-service components is more problematic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.R. Anderson, “Nondestructive Testing of Offshore Structures,” NDT Int’l., 20 (1987), 17.

    Google Scholar 

  2. S. Evanson, M. Otaka, and K. Hasegawa, “SQUID NDE Apparatus and Magnetic Calibration to Detect Degradation in Duplex Stainless Steel,” J. Eng. Mat. and Tech., 114 (1992), p. 41.

    CAS  Google Scholar 

  3. L. Neel, Cahiers de Physique, 25 (1944), p. 21.

    Google Scholar 

  4. H.J. Williams, “Detection of Domain Magnetization in Powder Patterns,” Phys. Rev., 71 (1947), p. 646.

    Google Scholar 

  5. H.J. Williams, R.M. Bozorth, and W. Shockley, “Magnetic Domain Patterns on Single Crystals of Silicon Iron,” Phys. Rev., 75 (1949), p. 155.

    Google Scholar 

  6. W.F. Brown, Jr., Phys. Rev., 75 (1949), p. 147.

    Google Scholar 

  7. H. Kwun and G.L. Burkhardt, “Effects of Grain Size, Hardness, and Stress on the Magnetic Hysteresis Loops of Ferromagnetic Steels,” J. Appl. Phys., 61(4) (1987), p. 1576.

    CAS  Google Scholar 

  8. R. Langman, “Some Comparisons Between the Measurement of Stress in Mild Steel by Means of Barkhausen Noise and Rotation of Magnetization,” NDT Int’l, 20 (1987), p. 93.

    Google Scholar 

  9. A. Randak, “On-Line Inspection of Semi-Finished and Finished Steel Products for Surface Defects and Internal Quality,” On-Line Inspection of Steel Products (Brussels, Belgium: IISI, 1983), pp. 1–20.

    Google Scholar 

  10. A.V. Filippov et al., “Method of Determining the Size of the Gap in Inspection Using an Attached Magnetic Device,” Sov. J. NDT, 26 (1990), p. 517.

    Google Scholar 

  11. V.N. Kostin and G.V. Bida, “The Magnetic Structurescope MS-2” Sov. J. NDT, 25 (1989), p. 94.

    Google Scholar 

  12. E.S. Gorkunov et al., “An Automated System for Magnetic Measurements Based on a Microcomputer and a CAMAC Apparatus,” Sov. J. NDT, 24 (1988), p. 568.

    Google Scholar 

  13. H.G. Ramos and P.S. Girao, “A Rotating Field Automated Measurement System for the Characterization of Ferromagnetic Materials,” J. Appl. Phys., 69(8) (1991), p. 5103.

    CAS  Google Scholar 

  14. D.C. Jiles, S. Hariharan, and M.K. Devine, “Magnescope: A Portable Magnetic Inspection System for Evaluation of Steel Structures and Components,” IEEE Trans. Mag., 26 (1990), p. 2577.

    Google Scholar 

  15. G.A. Pyatunin, “Control of the Quality of Rolled Steel with the Aid of Statistical and Magnetic Methods 01 Nondestructive Inspection,” Sov. J. NDT, 24 (1988), p. 658.

    Google Scholar 

  16. E.S. Gorkunov, “Magnetic Methods and Instruments for the Quality Control of the Case-Hardening of Ferromagnetic Steel Objects (Review),” Sov. J. NDT, 27 (1991), p. 1.

    Google Scholar 

  17. A.V. Filippov and S.A. Voronov, “Method of Eliminating the Gap Effect In Instruments with Attached Magnetic Devices,” Sov. J. NDT, 27 (1991), p. 196.

    Google Scholar 

  18. J.F. Bussière, “On-Line Measurement of the Microstructure and Mechanical Properties of Steel,” Mater. Eval., 44 (1986), p. 560.

    Google Scholar 

  19. J.F. Bussière, M. Lord, and M. Nott, “Relation Between Hardness, Microstructure and Magnetic Coercive Force in Rail Steels,” Non-Destructive Testing. (Oxford, UK: Pergamon Press: 1987), p. 1863.

    Google Scholar 

  20. B.I. Voronenko, “Coercive Force and Properties of Corrosion-Resisting Steels,” Sov. J. NDT, 24 (1988), p. 670.

    Google Scholar 

  21. M.A Mel’gui et al., “An Investigation of the Possibility of Inspection of the Annealing Quality of Low-Alloy Cold-Rolled Tool Steels by a Magnetic Method,” Sov. J. NDT, 26 (1990), p. 414.

    Google Scholar 

  22. I.A. Vais et al., “ Nondestructive Magnetic Method of Inspection of the Mechanical Properties of Cast Steels. I. Construction of Correlation Models,” Sov. J. NDT, 23 (1987), p. 86.

    Google Scholar 

  23. V.P. Tabachnik et al., “Magnetic Inspection Parameters of Cermet Plates Containing Cobalt,” Sov. J. NDT, 24 (1988), p. 463.

    Google Scholar 

  24. G.M. Popov, “A Method of Inspecting the Mechanical Properties of Components Made of a Maraging Steel,” Sov. J. NDT, 26 (1990), p. 533.

    Google Scholar 

  25. S.C. Sandomirskii, “An Analysis of a Method of Inspection of Moving Ferromagnetic Parts Using Coercive Force.” Sov. J. NDT, 28 (1992), p. 392.

    Google Scholar 

  26. S.C. Sandomirskii, “Choice of the Magnetizing Field Intensity in Magnetostructural Analysis of Ferromagnetic Products,” Sov. J. NDT, 28 (1992), p. 488.

    Google Scholar 

  27. V.A. Rachkov, I.G. Panus, and B.M. Mitel’man, “Certification of the Mechanical Properties of Rolled Plate in a Broadened Production-Line Temperature Range,” Sov. J. NDT, 27 (1991), p. 184.

    Google Scholar 

  28. V.N. Kostin, “Possibility of Magnetic Evaluation of the Mechanical Properties of Steels with Different Carbon Contents after Cold Plastic Deformation and Annealing,” Sov. J. NDT, 26 (1990), p. 334.

    Google Scholar 

  29. C.V. Bida and V.M. Kamardin, “Nondestructive Inspection of the Toughness Properties of Rolled Stock,” Sov. J. NDT, 28 (1992), p. 458.

    Google Scholar 

  30. V.M. Kamardin, G.V. Bida, and L.Z. Samokhvalova, “Correlation Between the ImpactToughnessof Low-Carbon and Low-Alloy Steels and Coercive Force,” Sov. J. NDT, 25 (1989), p. 17.

    Google Scholar 

  31. M. Foldeaki, H. Ledbetter, and P. Uggowitzer, “Magnetic Properties of Cr-Mn Austenitic Stainless Steels,” J. Mag. Mag. Mat., 110 (1992), p. 185.

    CAS  Google Scholar 

  32. D.C. Jiles, “Magnetic Properties and Microstructure of AISI 1000 Series Carbon Steels,” J. Phys. D, 21 (1988), p. 1186.

    CAS  Google Scholar 

  33. D.C. Jiles, “The Effect of Compressive Plastic Deformation on the Magnetic Properties of AISI 4130 Steels wilh Various Microstructures,” J. Phys. D., 21 (1988), p. 1196.

    CAS  Google Scholar 

  34. D.C. Jiles, “Variation of Ihe MagnetiC Properties of AISI 4140 Steels with Plastic Strain,” Phys. Stat. Sol. (a), 108 (1988), p. 417.

    CAS  Google Scholar 

  35. D.C. Jiles and D. Utrala, “Strain Dependence of the Magnetic Properties of AISI 4130 and 4140 Alloy Steels,” Review of Progress in Quanlilalive Nondestruclive Evaluation, vol. 78, ed. D.O. Thompson and D. Chimenti (New York: Plenum Press, 1988), p. 1455.

    Chapter  Google Scholar 

  36. B.K. Tanner et al., “Magnetic and Metallurgical Properties of High-Tensile Steels,” J. Mat. Sci., 23 (1988), p. 4534.

    CAS  Google Scholar 

  37. A.M. Sharova and A.P. Magilinskii, “Inspection of Welded Joints in Hardenable Steels: Special Features of the Magnetographic Method,” Sov. J. NDT, 24 (1988), p. 80.

    Google Scholar 

  38. S.M. Thompson, P.J. Allen, and B.K. Tanner, “Magnetic Properties of Welds in High-Strength Pearlilic Steels,” IEEE Trans. Mag., 26 (1990), p. 1984.

    Google Scholar 

  39. R.S. Sery, “Soft Magnetic Materials—17 Years After Electron Irradiation,” J. Appl. Phys., 61(8) (1987), p. 3859.

    CAS  Google Scholar 

  40. J.F. Stubbins et al., “Measurement of Irradiation Damage in Nuclear Pressure Vessel Steels by Magnelic Properties Change,” private communication (1992).

    Google Scholar 

  41. M.K. Devine et al., “Magnetic Property Changes in Various Structural Steels Due to Irradiation,” Review of Progress in Quantitative Nondestructive Evaluation, vol. 12, ed. D.O. Thompson and D. Chimenti (New York: Plenum Press, to be published).

  42. M.N. Mikheev et al., “The Possibility of Electromagnetic Inspection of the Hardening and Tempering Quality of 38KhS Steel Parts,” Sov. J. NDT, 24 (1988), p. 759.

    Google Scholar 

  43. V.N. Kostin, “Irreversible Remagnetizing of Polycrystalline Ferromagnetics along Nonsymmetric Hysteresis Loops and Its Use in Nondestructive Inspection,” Sov. J. NDT, 26 (1990), p. 677.

    Google Scholar 

  44. H. Sakamoto, M. Okada, and M. Homma, “Theoretical Analysis of Barkhausen Noise in Carbon Steels,” IEEE Trans. Mag., 23 (1987), p. 2236.

    Google Scholar 

  45. E.S. Corkunov et al., “Inspecting the Quality of Tempered Components of Medium-Carbon Steels Using Attached Electromagnets,” Sov. J. NDT, 23 (1987), p. 92.

    Google Scholar 

  46. I.A. Vais et al., “Nondestructive Magnetic Method of Inspection of the Mechanical Properties of Casl Steels. II. Practical Application of Correlation Models,” Sov. J. NDT, 23 (1987), p. 173.

    Google Scholar 

  47. E.S. Gorkunov and I.N. Batukhtina, “Examination of the Kinetics of Magnetic Properties in Tempering Structural Steels wilh Special Reference to Active Inspection of Their Quality,” Sov. J. NDT, 23 (1987), p. 177.

    Google Scholar 

  48. L.A. Kuznetsov and V.L. Maslennikov, “Inspection of the Quality of Heat Treatment of High-Strength Cast Iron,” Sov. J. NDT, 23 (1987), p. 233.

    Google Scholar 

  49. E.S. Gorkunov, V.M. Somova, and N.B. Buldakova, “Comparison of Reversible and Irreversible Processes During the Magnetization and Remagnetization of Heat-Treated Steels,” Sov. J. NDT, 24 (1988), p. 42.

    Google Scholar 

  50. A.Ya. Aronov et al., “Experimental Investigation of the Statistical Interrelation Between the Magnetic and Mechanical Parameters of Structural Steels,” Sov. J. NDT, 24 (1988). p. 163.

    Google Scholar 

  51. M.N. Mikheev et al., “New Methods of Nondestructive Control of the Mechanical Properties of Objects Made of Medium Carbon Steels,” Sov. J. NDT, 24 (1988), p. 445.

    Google Scholar 

  52. V.N. Kostin and G.V. Bida, “Optimization of Methods of Nondestructive Inspection of the Quality of Components on the Basis of Remanent Magnetic Induction,” Sov. J. NDT, 24 (1988), p. 664.

    Google Scholar 

  53. V.P. Tabachnik, “Possibilities of Using Magnetic Characteristics in the Inspection of Medium and High Tempering of Steel Products,” Sov. J. NDT. 28 (1992), p. 475.

    Google Scholar 

  54. M.A Mel’gui and S.G. Sandomirskii. “A Magnetic Analyzer of the Quality of Steel Components,” Sov. J. NDT, 25 (1989), p. 228.

    Google Scholar 

  55. E.S. Corkunov et al., “Application of Differential Magnetic Permeability in the Quality Control of Surface Hardening,” Sov. J. NDT, 25 (1989), p. 441.

    Google Scholar 

  56. G.M. Popov, “A Composite Investigation of Specimens of Constructional Steels with a Variable Carbon Content in the Surface Layer,” Sov. J. NDT, 25 (1989), p. 583.

    Google Scholar 

  57. G. Fillion, M. Lord, and J.F. Bussière, “Inference of Hardness from Magnetic Measurements in Pearlitic Steels,” Review of Progress in Quantitative Nondestructive Evaluation, vol. 9B, ed. D.O. Thompson and D. Chimenti (New York: Plenum Press, 1991), p. 1887.

    Google Scholar 

  58. V.P. Tabachnik, É.É. Fedorishcheva, and G.S. Chernova, “Calculation of the Magnetic Parameters of a Solid Product in Inspection by Coercive Force wilh the Aid of a Two-Pole Magnet,” Sov. J. NDT, 24 (1988), p. 229.

    Google Scholar 

  59. D.C. Sherman, S.I. Yavorovich, and A.M. Shifrin, “Regularities of the Change of the Structural and Phase Composition of the Mechanical Properties, and Magnetic Characteristics of Steel 38KhS in Isothermal Hardening,” Sov. J. NDT, 27 (1991), p. 203.

    Google Scholar 

  60. V.M. Morozova et al., “Possibilities of Magnetic Methods of Inspection of the Hardening and Tempering of Carbon Steel Parts,” Sov. J. NDT, 27 (1991), p. 358.

    Google Scholar 

  61. D.C. Jiles, “Review of Magnetic Methods for Nondestructive Testing,” NDT Int’l, 21 (1988), p. 311.

    Google Scholar 

  62. K.C. Pitman, “The Influence of Stress on Ferromagnetic Hysteresis,” IEEE Trans. Mag., 26 (1990), p. 1978.

    Google Scholar 

  63. P. Garikepati, T.T. Chang, and D.C. Jiles, “Theory of Ferromagnetic Hysteresis: Evaluation of Stress from Hysteresis Curves,” IEEE Trans. Mag., 24 (1988), p. 2922.

    Google Scholar 

  64. R. Langman, “Magnetic Properties of Mild Steel Under Condilions of Biaxial Stress,” IEEE Trans. Mag., 26 (1990), p. 1246.

    CAS  Google Scholar 

  65. D.C. Jiles et al., “Stress-Induced Changes in the Magnetic Properties of Some Nickel-Copper and Nickel-Cobalt Alloys,” J. Appl. Phys., 64(7) (1988), p. 3620.

    CAS  Google Scholar 

  66. S.A. Musikhin, V.F. Novikov, and V.N. Borsenko, “Use of Coercive Force as an Indicator Parameter in Nondestructive Measurement of Mechanical Stresses,” Sov. J. NDT, 24 (1988), p. 633.

    Google Scholar 

  67. E.S. Corkunov et al., “Resistance of Residual Magnetization of Heat-Treated Steel Products to Elastic Deformations,” Sov. J. NDT, 27 (1991), p. 138.

    Google Scholar 

  68. S.V. Kopeikin, A.P. Lyubarskii, and L.Z. Chernis, “Information and Measuring System for Checking the Absolute Values of Stress,” Sov. J. NDT, 24 (1988), p. 752.

    Google Scholar 

  69. D.L. Alherton and T. Sudersena Rao, “Effect of Order of Stress and Field Application on the Measured Flux Density in 1% Mn Pipeline Steel,” J. Appl. Phys., 62(7) (1987), p. 2914.

    Google Scholar 

  70. M.S.C. Bose, “A Study of Fatigue in Ferromagnetic Materials Using a Magnetic Hysteresis Technique,” NDT Inf’l, 19 (1986), p. 83.

    CAS  Google Scholar 

  71. P. Ruuskanen, “Magnetomechanical Effect in Polycrystalline Iron and Nickel During Cyclic Stressing,” doctoral thesis, Tampere University of Technology (1987).

    Google Scholar 

  72. P. Ruuskanen and P. Ruuskanen, “Reversible Component ΔBr of the Stress-Induced Change in Magnetization as a Function of Magnetic Field Strength and Stress Amplitude,” J. Mag. Mag. Mat., 98 (1991), p. 349.

    CAS  Google Scholar 

  73. M.K. Devine et al., “Development of Magnetic Inspection Techniques for Evaluation of Fatigue Damage and Stress in Low Alloy Steels,” Review of Progress in Quantitative Nondestructive Evaluation, vol. 10B, ed. D.O. Thompson and D.E. Chimenti (New York: Plenum Press, 1991), p. 2021.

    Google Scholar 

  74. G. Matzkanin, R.E. Beissner, and C.M. Teller, “The Barkhausen Effect and Its Applications to Nondestructive Evaluation,” Report No. NTIAC-79-2 (San Antonio, TX: Southwest Research Institute, 1979).

    Google Scholar 

  75. G. Bach, K. Goebbels, and W.A. Theiner, “Characterization of Hardening Depth by Barkhausen Noise Measurement,” Mater. Eval., 46 (1988), p. 1576.

    Google Scholar 

  76. B. Alessandro et al., “Phenomenology and Interpretation of the Barkhausen Effect in Ferromagnetic Materials (invited),” J. Appl. Phys., 64(10) (1988), p. 5355.

    CAS  Google Scholar 

  77. B. Alessandro et al., “Domain-Wall Dynamics and Barkhausen Effect in Metallic Ferromagnetic Materials. I. Theory,” J. Appl. Phys., 68(6) (1990), p. 2901.

    Google Scholar 

  78. B. Alessandro et al., “Domain-Wall Dynamics and Barkhausen Effect in Metallic Ferromagnetic Materials. II. Experiments,” J. Appl. Phys., 68(6) (1990), p. 2908.

    CAS  Google Scholar 

  79. S. Tiitto, “On the Influence of Microstructure on Magnetization Transitions in Steel,” Acta Polytech. Scand., 119 (1977), p. 1.

    Google Scholar 

  80. R. Ranjan, O. Buck, and R.B. Thompson, “A Study of the Effect of Dislocation on the Magnetic Properties of Nickel Using Magnetic NDE Methods,” J. Appl. Phys., 61(8) (1987), p. 3196.

    CAS  Google Scholar 

  81. C. Bertotti, F. Fiorillo, and A. Montorsi, “The Role of Grain Size in the Magnetization Process of Soft Magnetic Materials,” J. Appl. Phys., 67(9) (1990), p. 5574.

    CAS  Google Scholar 

  82. A.V. Vinogradov, V.N. Moskvin, and Yu.O. Polyakov, “Inspecting the Thickness of Protective Coatings Utilizing the Barkhausen Effect,” Sov. J. NDT, 26 (1990), p. 349.

    Google Scholar 

  83. K. Tiitto, “Solving Residual Stress Measurement Problems by a New Nondestructive Magnetic Method,” Nondestructive Evaluation: Application to Materials Processing, ed. O. Buck and S.M. Wolf (Materials Park, OH: ASM, 1984), p. 161.

    Google Scholar 

  84. J. Kameda and R. Ranjan, “Nondestructive Evaluation of Steels Using Acoustic and Magnetic Barkhausen Signals—I & II,” Acta Metall., 35 (1987), p. 1515.

    CAS  Google Scholar 

  85. C. Jagadish, L. Clapham, and D.L. Atherton, “Effect of Bias Field and Stress on Barkhausen Noise in Pipeline Steels,” NDT Int’l, 22 (1989), p. 297.

    Google Scholar 

  86. C. Jagadish, L. Clapham, and D.L. Atherton, “The Influence of Stress on Surface Barkhausen Noise Generation in Pipeline Steels,” IEEE Trans. Mag., 25 (1989), p. 3452.

    CAS  Google Scholar 

  87. C. Jagadish, L. Clapham, and D.L. Atherton, “Influence of Uniaxial Elastic Stress on Power Spectrum and Pulse Height Distribution of Surface Barkhausen Noise in Pipeline Steel,” IEEE Trans. Mag., 26 (1990), p. 1160.

    Google Scholar 

  88. C. Jagadish, L. Clapham, and D.L. Atherton, “The Effect of Stress and MagnetiC Field Orientation on Surface Barkhausen Noise in Pipeline Steel,” IEEE Trans. Mag., 26 (1990), p. 262.

    Google Scholar 

  89. D.C. Jiles, “The Effect of Stress on Magnetic Barkhausen Activity in Ferromagnetic Steels,” IEEE Trans. Mag., 25 (1989), p. 3455.

    CAS  Google Scholar 

  90. H. Kwun and G.L. Burkhardt, “Nondestructive Measurement of Stress in Ferromagnetic Steels Using Hannonic Analysis of Induced Voltage,” NDT Int’l, 20 (1987), p. 167.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Devine, M.K. The magnetic detection of material properties. JOM 44, 24–30 (1992). https://doi.org/10.1007/BF03223167

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03223167

Keywords

Navigation