Skip to main content
Log in

Materials characterization and flaw detection by acoustic NDE

  • Nondestructive Evaluation
  • Overview
  • Published:
JOM Aims and scope Submit manuscript

Abstract

For many years, researchers have used internal friction to characterize structural inhomogeneities or flaws in a material by using the frequency or temperature dependence of the acoustic loss mechanisms connected with these inhomogeneities. The field of materials characterization and flaw detection by acoustic nondestructive evaluation (NDE) thus has a broad fundamental base. This knowledge base is of great interest in that it is useful for nondestructive characterization and, particularly, to determine the effect of these inhomogeneities on the overall performance of the material. A variety of inhomogeneities can be studied by acoustic NDE, including interstitials, precipitates, dislocations, grains, phase transformations, porosity, and cracks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.H. Titran and T.L. Crobstein, JOM, 42(8) (1990), p. 8.

    Article  Google Scholar 

  2. M. Weller, J. de Physique, 46 (1985), p. C10–7.

    Google Scholar 

  3. O. Buck et al. Mechanics and Mechanisms of Material Damping, STP 1169, ed. V.K. Kinra and A Wolfenden (Philadelphia, PA: ASTM, in press).

  4. O. Buck et al., Phys. Stat. Sol., 55 (a) (1979), p. 223.

    CAS  Google Scholar 

  5. C.V. Owen et al., Metall. Trans., 15A (1984),p. 147.

    CAS  Google Scholar 

  6. B. Noble, S.J. Harris, and K. Dinsdale, J. Mat. Sci., 17 (1982), p. 461.

    CAS  Google Scholar 

  7. P.W. Wallace et al., J. de Physique, 46 (1985), p. C10–59.

    Google Scholar 

  8. A.S. Nowick and B.S. Berry, Anelaslic Relaxalion in Crystalline Solids (New York: Academic Press, 1972).

    Google Scholar 

  9. O. Buck, D.O. Thompson, and C.A. Wert, J. Phys. Chem. Sol., 32 (1971), p. 2331.

    CAS  Google Scholar 

  10. M. Koiwa and O. Yoshinari, J. de Physique, 46 (1985), p. C10–99.

    Google Scholar 

  11. H.D. Mair, “Measurement of Hydrogen in Zr-2.5% Nb Using High Accuracy Velocity Ratio Measurements,” Review of Progress in Quantitative NDE, vol. 11, ed. D.O. Thompson and D.E. Chimenti (New York: Plenum Press, in press).

  12. O. Yoshinari et al., J. de Physique, 46 (1985), p. C1O–95.

    Google Scholar 

  13. M. Rosen, Materials Analysis by Ultrasonics, ed. A. Vary (Park Ridge, NJ: Noyes Data Corporation, 1987), p. 79.

    Google Scholar 

  14. S. Razvi et al., Review of Progress in Quantitative NDE, vol. 6B, ed. D.O. Thompson and D.E. Chimenti (New York: Plenum Press, 1987), p. 1403.

    Google Scholar 

  15. W.T. Yost et al., J. Appl. Phys., 52 (1981), p. 126.

    CAS  Google Scholar 

  16. A. Hikata and C. Elbaum, Phys. Rev., 144 (1966), p. 469.

    CAS  Google Scholar 

  17. A. Hikata, F.A. Sewell, and C. Elbaum, Phys. Rev., 151 (1966), p. 442.

    CAS  Google Scholar 

  18. A. Granalo and K. Lücke, J. Appl. Phys., 27 (1956), pp. 583 and 789.

    Google Scholar 

  19. O. Buck, IEEE Trans. Sonics and Ultrasonics, SU-23 (1976), p. 346.

    Google Scholar 

  20. W.P. Mason and J. Wehr, J. Phys. Chem. Sol., 31 (1970), p. 1925.

    CAS  Google Scholar 

  21. R.B. Schwarz, J. de Physique, 46 (1985), p. C1O–207.

    Google Scholar 

  22. R.E. Green, J. de Physique, 46 (1985), p. C1O–827.

    Google Scholar 

  23. G. Gremaud and M. Bujard, J. de Physique, 46 (1985), p. C10–315.

    Google Scholar 

  24. K. Goebbels, Research Techniques in Nondestructive Testing, vol. IV, ed. R.S. Sharpe (New York: Academic Press, 1980), p. 87.

    Google Scholar 

  25. C. Zener, Phys. Rev., 60 (1941), p. 906.

    Google Scholar 

  26. R. Truell, C. Elbaum, and C.C. Chick, Ultrasonic Methods in Solid Slate Physics (New York: Academic Press, 1969).

    Google Scholar 

  27. E.P. Papadakis, Ultrasonics, ed. P.D. Edmonds (New York: Academic Press, 1981), p. 237.

    Google Scholar 

  28. F.E. Slanke and G.S. Kino, J. Acoust. Soc. Amer., 75 (1984), p. 665.

    Google Scholar 

  29. E.P. Papadakis, Int. Met. Rev., 29 (1984), p. 1.

    CAS  Google Scholar 

  30. A. Vary, Solid Mechanics Research for Quantitative Non-Destructive Evaluation, ed. J.D. Achenbach and Y. Rajapakse (Dortrecht, the Nelherlands: Martinus Nijhoff, 1987), p. 135.

    Chapter  Google Scholar 

  31. G. Canella and M. Taddei, Nondestructive Characterization of Materials, vol. II, ed. J.F. Bussiere et al. (New York: Plenum Press, 1987), p. 261.

    Google Scholar 

  32. F. Nadeau, J.F. Bussiere, and G. Van Omnen, Mat. Eval., 43(1) (1985), p. 101.

    Google Scholar 

  33. A.N. Sinclair and H. Eng, Nondestructive Characterization of Materials, vol. II, ed. J.F. Bussière et al. (New York: Plenum Press, 1987), p. 251.

    Google Scholar 

  34. A.N. Sinclair and T. Chau, Advances in Fracture Research, vol. 5, ed. K. Salama et al. (Oxford, U.K: Pergamon Press, 1989), p. 3145.

    Google Scholar 

  35. T.S. Kê, Phys. Rev., 72 (1947), p. 41.

    Google Scholar 

  36. T.S. Kê, J. Appl. Phys., 20 (1949), p. 274.

    Google Scholar 

  37. C.W. Miles and G.M. Leak, Proc. Phys. Soc., 78 (1961), p. 1529.

    Google Scholar 

  38. J.T.A. Roberts and P. Barrand, Trans. Metall. Soc. AIME, 242 (1968), p. 2299.

    CAS  Google Scholar 

  39. P. Barrand, Acta Metall., 14 (1966), p. 1247.

    CAS  Google Scholar 

  40. D.A. Porter and K.E. Easterling, Phase Transformations in Metals and Alloys (Andover, U.K.: Van Nostrand Reinhold, 1981).

    Google Scholar 

  41. C.L. Snead and D.O. Welch, J. de Physique, 46 (1985), p. C10–589.

    Google Scholar 

  42. J.E. Bidaux, R. Schaller, and W. Benoit, J. de Physique, 46 (1985), p. C10–601.

    Google Scholar 

  43. J. Gui, J. Feng, and Z. Wang, J. de Physique, 46 (1985), p. C10–629.

    Google Scholar 

  44. J.C. Williams, Titanium Science and Technology, vol. 3, ed. R.L Jaffee and H.M. Burte (New York: Plenum Press, 1973), p. 1433.

    Google Scholar 

  45. D. De Fontaine and O. Buck, Phil. Mag., 27 (1973), p. 967.

    Google Scholar 

  46. A.W. Sommer et al., Acta Metall., 21 (1973), p. 489.

    CAS  Google Scholar 

  47. O. Buck et al., Internal Friction and Ultrasonic Attenuation in Crystalline Solids, vol. I, ed. D. Lenz and K. Lücke (Berlin: Springer-Verlag, 1975), p. 451.

    Google Scholar 

  48. S.R. Buxbaum and R.E. Green, Nondestructive Methods for Material Property Determination, ed. C.O. Ruud and R.E. Green (New York: Plenum Press, 1984), p. 271.

    Google Scholar 

  49. B.R. Tittmann, L.A Ahlberg, and P.M. Beckham, J. de Physique, 46 (1985), p. C10–605.

    Google Scholar 

  50. L. Adler, J. Rose, and C. Mobley, J. Appl. Phys., 59 (1986), p. 336.

    CAS  Google Scholar 

  51. S. Howard et al., NDE of Microstructure for Process Control, ed. H.G.N. Wadley (Malerials Park, OH: ASM, 1985), p. 81.

    Google Scholar 

  52. W.A. Spilzig, R.B. Thompson, and D.C. Jiles, Metall. Trans., A, 20A (1989), p. 571.

    Google Scholar 

  53. C.M. Sayers and R.L. Smith, Ultrasonics, 20 (1982), p. 201.

    Google Scholar 

  54. H.M. Ledbetter, R.J. Fields, and S.K. Datta, Acta Metall., 35 (1987), p. 2393.

    CAS  Google Scholar 

  55. J.M. Coffey, The Measurement of Crack Length and Shape during Fracture and Fatigue, ed. C.J. Beevers (West Midlands, U.K.: Engineering Materials Advisory Services, 1980), p. 345.

    Google Scholar 

  56. M.G. Silk, Research Techniques in Nondestructive Testing, vol. 3, ed. R.S. Sharpe (New York: Academic Press, 1977), p. 51.

    Google Scholar 

  57. O. Buck, Fracture Mechanics: Microstructure and Micromechanisms. ed. S.V. Nair et al. (Materials Park, OH: ASM, 1989), p. 31.

    Google Scholar 

  58. R.O. Rilchie and J. Lankford, eds., Small Fatigue Cracks (Warrendale, PA: TMS, 1986).

    Google Scholar 

  59. N.R. Joshi and R.E. Green, Eng. Fracl. Mech., 4 (1972), p. 577.

    Google Scholar 

  60. M.T. Resch et al., J. Nondest. Eval., 5 (1985), p. 1.

    Google Scholar 

  61. W.L. Morris, O. Buck, and R.V. Inman, J. Appl. Phys., 50 (1979), p. 6737.

    CAS  Google Scholar 

  62. J.M. Richardson, Int. J. Eng. Sci., 17 (1979), p. 83.

    Google Scholar 

  63. J.C. Newman and W. Elber, eds., Mechanics of Fatigue Crack Closure, STP 982 (Philadelphia, PA: ASTM, 1988).

    Google Scholar 

  64. W. Elber, Damage Tolerance in Aircraft Structures, STP 486 (Philadelphia, PA: ASTM, 1971), p. 230.

    Book  Google Scholar 

  65. R.B. Thompson and C.J. Fiedler, Review of Progress in Quantitative Nondestructive Evaluation, vol 3A, ed. D.O. Thompson and D.E. Chimenti (New York: Plenum Press, 1984), p. 207.

    Google Scholar 

  66. O. Buck, D.K. Rehbein, and R.B. Thompson, Eng. Fract. Mech., 28 (1987), p. 413.

    Google Scholar 

  67. K. Kendall and D. Tabor, Proc. Roy. Soc. London, A232 (1971), p. 321.

    Google Scholar 

  68. R.B. Thompson, O. Buck, and D.K Rehbein, 23rd National Symposium on Fracture Mechanics (Philadelphia, P A: ASTM, in press).

  69. O.K. Rehbein, J.F. Smilh, and D.O. Thompson, Nondestructive Evaluation: Application to Materials Processing, ed. O. Buck and S.M. Wolf (Materials Park, OH: ASM, 1984), p. 155.

    Google Scholar 

  70. D.O. Palmer et al., J. Nondest. Eval., 7 (1988), pp. 153 and 167.

    Google Scholar 

  71. O. Buck et al., Metall. Trans. A, 20A (1989), p. 627.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buck, O. Materials characterization and flaw detection by acoustic NDE. JOM 44, 17–23 (1992). https://doi.org/10.1007/BF03223166

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03223166

Keywords

Navigation