Skip to main content
Log in

Recent developments in Japanese titanium research and development

  • Titanium and Intermetallics
  • Overview
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Activity in the titanium industries in Japan has been steadily increasing as the demand for titanium and titanium alloys in consumer goods grows. The key issues in continuing the growth of these applications are lowering costs and developing new markets. In this article, advances in R&D reported mainly in the Japanese journals and at Japanese conferences are briefly described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Kawabe, “Strengthening of Titanium Alloys,” Kinzoku, 65 (8) (1995), pp. 667–672.

    CAS  Google Scholar 

  2. M. Maki, Phase Transformation and Thermomechanical Processing of β-Titanium Alloys, Report of Frontier Subcommittee on Titanium Materials (1994-1995), pp. 55–66.

    Google Scholar 

  3. M. Ikeda et al., “Influence of Al Addition on Resistivity and Phase Constitution of Quenched Ti-5Fe Alloy,” Tetsu-to-Hagane, 81 (9) (1995), pp. 60–64.

    Google Scholar 

  4. Y. Takemoto, M. Hida, and A. Sakakibara, “Deformation Induced Transformation of ω Phase in Aged Ti-14 mass%Mo Alloy,” J. Japan Inst. Metals, 59 (8) (1995), pp. 780–787.

    CAS  Google Scholar 

  5. M. Okazaki, “On the Problem of Small Fatigue Cracks in Metallic Materials,” J. Japan Inst. Light Metals, 45 (11) (1995), pp. 587–596.

    CAS  Google Scholar 

  6. M. Okazaki and T. Hizume, “Effect of Microstructure on Small Fatigue Crack Growth and the Crack Opening-Closing Behavior in Ti-6Al-4V Alloy-Study on Materials Heat-Treated in Beta Field,” J. Soc. Mat. Sci., 43 (493) (1994), pp. 1238–1244.

    CAS  Google Scholar 

  7. S. Tanaka et al., “Effects of β-STA Heat Treatment on Initiation and Propagation Processes of Microcracks in Ti-Alloy,” J. Soc. Mat. Sci., 43 (493) (1994), pp. 1238–1244.

    Google Scholar 

  8. K. Tokaji, “Fatigue of Advanced Metallic Materials,” Mat. Sci. Japan, 43 (489) (1994), pp. 710–716.

    Google Scholar 

  9. K. Nakasa and T. Shimizu, “Effect of Hydrogen-Charging on the Fatigue Crack Initiation and Propagation Behavior of Ti-15% V-3%Cr3%Al-3%Sn Alloy,” J. Japan Inst. Light Metals, 45 (11) (1995), pp. 643–648.

    CAS  Google Scholar 

  10. Y. Okazaki et al., “Effect of Heat Treatment on Microstructure and Mechanical Properties of New Titanium Alloys for Surgical Implantation,” J. Japan Inst. Metals, 59 (1) (1995), pp. 108–115.

    CAS  Google Scholar 

  11. Y. Okazaki et al., “Mechanical Properties and Corrosion Fatigue of New Titanium Alloys for Medical Implants in Physiological Saline Solution,” J. Japan Inst. Metals, 59 (10) (1995), pp. 1078–1083.

    CAS  Google Scholar 

  12. Y. Okazaki et al., “Corrosion Resistance of Implant Alloys in Pseudo Physiological Solution and Role of Alloying Elements in Passive Films,” J. Japan Inst. Metals, 59 (2) (1995), pp. 229–236.

    CAS  Google Scholar 

  13. E. Kobayashi et al., “Structure Control of Ti-Zr-Nb Biomedical Implant Alloys,” J. Japan Dent. Mat., 14 (Special Issue 26) (1995), pp. 274–275.

    Google Scholar 

  14. D. Kuroda, M. Niinomi, and M. Morinaga, “Design of New β-Titanium Alloys for Implant Materials,” Current Advances in Materials and Processes, ISIJ, 9 (3) (1996), p. 421.

    Google Scholar 

  15. M. Niinomi et al., “Fracture Characteristics, Microstructure and Tissue Reaction of Ti-5Al-2.5Fe for Orthopedic Surgery,” Met. Tans. A (1996) in press.

    Google Scholar 

  16. A. Yamamoto et al., “Fretting Fatigue Properties of TI-6Al-4V Alloy in Pseudo-Body Fluid and Evaluation of Biocompatibility by Cell Culture Method,” J. Japan Inst. Metals, 59 (4) (1995), pp. 463–470.

    CAS  Google Scholar 

  17. K. Hayashi et al., “Effect of Surface Roughness of Hydroxyapatite-coated Titanium on the Bone-implant Interface Shear Strength,” Biomaterials, 15 (1994), pp. 1187–1191.

    CAS  Google Scholar 

  18. Y. Vidovic, H.P. Chung, and T. Mori, “Enhancement of a Titanium Denture Frame Model: Temperature and Spruing Factors,” Dent. Mat. Journal, 14 (2) (1995), pp. 256–262.

    CAS  Google Scholar 

  19. T. Nakao, T. Yoneyama, and H. Hamanaka, “Castability and Mechanical Properties of Ti-6Al-7NbAlloy Dental-cast,” J. Japan Den. Mat., 14 (4) (1995), pp. 406–413.

    Google Scholar 

  20. Y. Okazaki et al., “Corrosion and Mechanical Properties of New Titanium Alloys for Centrifugally Cast Dental Implants,” J. Japan Inst. Metals, 59 (10) (1995), pp. 1070–1077.

    CAS  Google Scholar 

  21. H. Fujii and K. Fujisawa, “Low Cost Powder Metallurgy Fabrication of Titanium Alloys of Blended Elemental Powders,” Materia Japan, 34 (2) (1995), pp. 212–221.

    CAS  Google Scholar 

  22. U. Kusumoto, Y. Ikeda, and S. Takagi, “Reversion Mechanism of Sintered Ti-4%Cr Alloy,” Current Advances in Materials and Processes, 8 (6) (1995), p. 1569.

    Google Scholar 

  23. H. Mori, M. Enoki, and T. Kishi, ″Influence of Microstructure Process of Powder-Processed Blended Elemental Ti-10V-2Fe-3Al Alloys, Proc. 8th World Conf. on Titanium (London, IOM, 1995).

    Google Scholar 

  24. K. Kusaka et al., “Tensile Behavior of Sintered Titanium by MIM Process,” Funtai and Funmatsuyakin, 42 (3) (1995), pp. 383–387.

    CAS  Google Scholar 

  25. H. Kyougoku et al., Funtai and Funmatsuyakin, 41 (9) (1994), pp. 1075–1074.

    Google Scholar 

  26. T. Saito, T. Furuta, and T. Yamaguchi, “Development of Low Cost Titanium Matrix Composite,” Recent Advances in Titanium Metal Matrix Composites, ed. F.H. Froes and J. Storer (Warrendale, PA: TMS, 1995), pp. 33–44.

    Google Scholar 

  27. M. Hagiwara, A. Emura, and Y. Kawabe, “Mechanical Properties of Lower Cost Type Ti Alloys and Their MMC′s,” Current Advances in Materials and Processes, 8 (6) (1995), p. 1568.

    Google Scholar 

  28. T. Takahashi, “In-situ Synthesis of TiB Whisker-Reinforced Titanium by Mechanical Alloying,” J. Japan Inst. Metals, 59 (3) (1995), pp. 244–250.

    CAS  Google Scholar 

  29. H. Fujii et al., “Development of High-Performance, Low-Alloy Ti-Fe-O-N Series,” Proc. 8th World Conf. on Titanium (London: IOM, 1995).

    Google Scholar 

  30. K. Taki and H. Sakuyama, “Influences of Ni and Ru on Corrosion Resistance of Ti-0.5%Ni-0.05%Ru (Grade 13),” Tetsu-to-Hagane, 81 (10) (1995), pp. 1013–1018.

    CAS  Google Scholar 

  31. T. Nagata, “New Corrosion Resistant Titanium Alloy ″SMI-AGE,” Report of Frontier Subcommittee on Titanium Materials (1994-1995), pp. 117–124.

    Google Scholar 

  32. Y. Sugisaki, “Corrosion Resistance and Mechanical Properties of Ti-Ni-(Pd,Ru)-Cr Alloy (AKOT),” Report of Frontier Subcommittee on Titanium Materials (1995), pp. 125–129.

    Google Scholar 

  33. C. Taki, “Corrosion Resistant Mechanism of TICOREX,” Report of Frontier Subcommittee on Titanium Materials (1995), pp. 112–116.

    Google Scholar 

  34. O. Ise et al., “Corrosion Resistance of Titanium-Platinum Alloy Prepared by Spark Plasma Sintering,” J. Japan Inst. Metals, 59 (5) (1995), pp. 554–558.

    CAS  Google Scholar 

  35. Titanium (Tokyo: Japan Titanium Society, 1995), p. 3.

  36. Titanium (Tokyo: Japan Titanium Society, 1995), pp. 20-21.

  37. R. Ohyagi, “Titanium Application Development for Architectural Purposes,” Report of Frontier Subcommittee on Titanium Materials (1994-1995), pp. 147–163.

    Google Scholar 

  38. K. Ozawa and Y. Matsuda, “Practical Development of Wheel Chair Made of Titanium,” Kinzoku, 66 (3) (1996), pp. 248–251.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niinomi, M. Recent developments in Japanese titanium research and development. JOM 48, 55–57 (1996). https://doi.org/10.1007/BF03223000

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03223000

Keywords

Navigation