Skip to main content
Log in

Recent advances in the thermohydrogen processing of titanium alloys

  • Titanium and Intermetallics
  • Overview
  • Published:
JOM Aims and scope Submit manuscript

Abstract

In this article, the status of the methods and applications of the thermohydrogen processing of Titanium alloys is reviewed. Increased understanding of the mechanisms by which such processing is enhanced and the microstructure refined should lead to industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F.H. Froes, D. Eylon, and C. Suryanarayana, “Thermochemical Processing of Titanium Alloys,” JOM, 42 (3) (1990), pp. 26–29.

    Article  CAS  Google Scholar 

  2. V.K. Nosov and B.A Kolachev, Hydrogen-Induced Plasticization of Titanium Alloys at Hot Deformation (Moscow, Russia: Metallurgia, 1986).

    Google Scholar 

  3. W.R. Kerr et al., “Hydrogen as an Alloying Element in Titanium (Hydrovac),” Titanium 80: Science and Technology, vol. 4, ed. H. Kimura and O. Izumi (Warrendale, PA: TMS, 1980), pp. 2477–2486.

    Google Scholar 

  4. E.G. Ponyatovsky et al., “Effect of Hydrogen on Ductility and Strength of a VT20 Titanium Alloy at Temperatures from 20 to 740°C,” Physics of Metals & Metallography, 68 (6) (1989), pp. 122–128.

    Google Scholar 

  5. O.N. Senkov, E.G. Ponyatovsky, and I.O. Bashkin, “Mechanical Behaviour of a VT20 Titanium Alloy at Different Initial States and Hydrogen Contents,” Mechanical Behavior of Materials: VI. vol. 2, ed. M. Jono and T. Inoue (Oxford, U.K.: Pergamon, 1991), pp. 725–730.

    Google Scholar 

  6. N. Bida and V. DePierre, technical report AFML-TR-75-171, U.S. Air Force Materials Laboratory, Wright-Patterson AFB (1975).

  7. F.H. Froes and D. Eylon, “Applications of HIPing to Titanium Based Alloys,” Proc. 4 Int. Conf. Isostatic Pressing ISO-4 (Shrewsbury, U.K.: MPR Publishing Services Ltd., 1990), pp. 16.1–16.30.

    Google Scholar 

  8. R.J. Lederich et al., “Influence of Hydrogen Additions on High-Temperature Superplasticity of Titanium Alloys,” Advanced Methods for Titanium, ed. D.E. Hasson and C.H. Hamilton (New York: AIME, 1982), pp. 115–128.

    Google Scholar 

  9. F.H. Froes, “Synthesis of Metallic Materials for Demanding Aerospace Applications Using Powder Metallurgy Techniques,” 1991 P/M in Aerospace and Defence Technology, Proc. PM Aerasp. Def. Technol. Symp. (Princeton, NJ: MPIF, 1991), pp. 5–33.

    Google Scholar 

  10. W.H. Kao and L.M. Orsborn, Powder Metallurgy of Titanium Alloys, ed. F.H. Froes and J.E. Smugeresky (Warrendale, PA: TMS, 1980), p. 163.

    Google Scholar 

  11. K. Yong, Z.X. Guo, and D.V. Edmonds, “Processing of Titanium Matrix Composites With Hydrogen As a Temporary Alloying Element,” Scripta Metall. Mater., 27 (12) (1992), pp. 1695–1700.

    Google Scholar 

  12. K. Yang, Z.X. Guo, and D.V. Edmonds, “Study of the Effect of Hydrogen on Titanium Alloy Foils to be Used as Potential Composite Matrices,” Scripta. Metall. Mater. 27 (8) (1992), pp. 1021–1026.

    CAS  Google Scholar 

  13. Z.X. Guo et al., “The Effect of Temporary Hydrogenation on the Processing and Interface of Titanium Composites,” Composites, 25 (9) (1994), pp. 881–886.

    CAS  Google Scholar 

  14. W.R. Kerr, “The Effect of Hydrogen as a Temporary Alloying Element on the Microstructure and Tensile Properties of Ti-6Al-4V,” Metall. Trans. A, 16A (1986), pp. 1077–1087.

    Google Scholar 

  15. A.A. Hin, “Phase and Structure Transformations in Titanium Alloys Alloyed with Hydrogen,” Ivestiya VUZ, Tsvetnaya Metallurgiya (1) (1987), pp. 96–101.

    Google Scholar 

  16. A.A. Hin, “Some Aspects olInteraction of Hydrogen with Metallic Materials,” Izvestiya AN SSSR: Metally (5) (1994), pp. 65–70.

    Google Scholar 

  17. A.A. Hin, A.M. Mamonov, and M.Yu. Kollerov, “Scientific Fundamentals and Principles of Developing Processes of Thermohydrogen Treatment of Titanium Alloys,” Izvestiya AN SSSR: Metally (4) (1994), pp. 157–168.

    Google Scholar 

  18. B.A. Kolachev, “Reversible Alloying of Titanium Alloys with Hydrogen,” Metallovedenie i Termichesknya Obrabotkn Metallov (10) (1993), pp. 28–32.

    Google Scholar 

  19. O.N. Senkov and I.O. Bashkin, “Improved Workability, Microstructure and Final Properties of a Titanium Alloy due to Temporary Hydrogenation,” Metallurgical Processes for the TMS, 1994), pp. 271–80.

    Google Scholar 

  20. O.N. Senkov, E.Y. Konopleva, and E.G. Ponyatovsky, “Transformation-Induced Plasticity of a Hydrogen Alloyed Titanium Alloy,” Microstructure/properties Relationships of Titanium Alloys, ed. S. Ankem and J.A. Hall (Warrendale, PA: TMS, 1994), pp. 207–214.

    Google Scholar 

  21. A. San-Martin and E.D. Manchester, “The H-Ti (Hydrogen-Titanium) System,” Bull. Alloy Phase Diagrams, 8 (1) (1987), pp. 31–42.

    Google Scholar 

  22. B. Liao et al., “Effect of Hydrogen on (a1+β)/β Transus Temperature of Super- α2 Alloy,” Scripta Metall. Mater., 32 (2) (1995), pp. 277–281.

    CAS  Google Scholar 

  23. O.N. Senkov, E.Y. Konopleva, and E.G. Ponyatovsky, “The Influence of the Initial Phase Composition and Microstructure on Deformation Properties of a Hydrogen-Alloyed Titanium Alloy,” Fizika Metallov i Metallovedenie, 77 (3) (1994), pp. 142–151.

    CAS  Google Scholar 

  24. A.A. Hin and A.M. Marnonov, “Temperature-Concentration Diagrams of Phase Composition of Hydrogen-Bearing Multicomponent Titanium Alloys,” Russian Metallurgy (5) (1994), pp. 52–57.

    Google Scholar 

  25. E.Y. Konopleva and Y.M. Bayazitov, “Effect of Hydrogen on Temperature of the Alpha to Beta Transition in a Titanium Alloy VT20,” Metallovedenie i Termicheskaya Obrabotka Metallov (1) (1992), pp. 33–35.

    Google Scholar 

  26. O.N. Senkov and E.C. Ponyatovsky, “TransformationInduced Plasticity of a Hydrogen Alloyed Titanium Alloy,” Strength of Materials (ICSMA 10), ed. H. Oikawa et al. (Tokyo: Japan Institute of Metals, 1994), pp. 639–642.

    Google Scholar 

  27. O.N. Senkov et al., “Structure of VT20 Titanium Alloy After Hydrogen Treatment and Deformation at Moderate Temperatures,” Fizika Metallov i Metallovedenie, 76 (1) (1993), pp. 128–138.

    CAS  Google Scholar 

  28. S.B. Belova, V.K. Nosov, and A.A. Hin, “Conditions of Development of the Hydrogen Plasticization Effect in a-Titanium Alloy VT5-1,” Izvestiya VUZ, Tsvetnaya Metallurgiya (5) (1987), pp. 83–86.

    Google Scholar 

  29. B.A. Kolachev et al., “Hydrogen Effect on the Structure and Mechanical Properties of a Titanium Alloy VT3-1,” Metallovedenie i Termicheskaya Obrabotka Metallov (1) (1992), pp. 32–33.

    Google Scholar 

  30. O.N. Senkov, I.O. Bashkin, and E.G. Ponyatovsky, “The Combined Effect of Temporary Hydrogen Alloying and Deformation on Microstructure and Properties of a HighStrength Titanium Alloy,” Microstructure/properties Relationships of Titanium Alloys, ed. S. Ankem and J.A. Hall (Warrendale, PA: TMS, 1994), pp. 191–198.

    Google Scholar 

  31. R.J. Smickley and L.E. Darid, U.S. patent no. 4,505,746 (1985).

  32. L. Levin et al., Proc. 5th Int. Conf. on Titanium, ed. G. Lütjering, U. Zwicker, and W. Bunk (Munich, Germany: Deutsche Gesellschaft für Metallkunde E.V., 1984), pp. 2107–2114.

    Google Scholar 

  33. C.E Yolton, D. Eylon, and F.H. Froes, Proc. 6th Int. Conf. on Titanium, ed. P. Lacombe, R. Tricot, and G. Beranger (Cannes, France: les Editions de Physique, 1988), pp. 1641–1646.

    Google Scholar 

  34. M.Yu. Kollerov, A.A. Hin, and S.V. Skvortsova, “Martensitic Transformation and Effects of Inelastic Behavior in Hydrogen-Containing Titanium Alloys,” Izvestiya AN SSSR: Metally (5) (1994), pp. 118–125.

    Google Scholar 

  35. O.N. Senkov, “Microstructure Evolution in a HydrogenAlloyed Titanium Alloy during Deformation at Elevated Temperatures,” Strength of Materials (ICSMA 10), ed. H. Oikawa et al. (Tokyo: Japan Institute of Metals, 1994), pp. 635–638.

    Google Scholar 

  36. O.N. Senkov and J.J. Jonas, “Effect of Phase Composition and Hydrogen Level on the Deformation Behavior of Titanium-Hydrogen Alloys,” Metal. & Mater. Trans. A, 27 (7) (1996).

    Google Scholar 

  37. Z. Xu et al., “Effect of Hydrogen on High Temperature Plasticity of Ti-6Al-4V Alloy,” Acta Metallurgica Sinica, 27 (4) (1991), pp. A270–A273.

    CAS  Google Scholar 

  38. B. Gong et al., “Strength and Toughness of Microstructurally Controlled Alpha+Beta Type Titanium Alloys by Thermochemical Processing with Hydrogen,” Keikinzoku/Journ. Jap. Inst. Light Metals, 42 (11) (1992), pp. 638–643.

    CAS  Google Scholar 

  39. V.K. Nosov, V.K. Uvarov, and V.M. Ilin, “Characteristics of Isothermal Upsetting of a Titanium Alloy with Varying Hydrogen Content,” Russian Metallurgy (4) (1986), pp. 71–77.

    Google Scholar 

  40. Yu.A. Aksyonov, L.I. Anisimova, and V.L. Kolmogorov, “Reversible Addition of Hydrogen to Titanium Alloys,” J. Mater. Process. Technol., 40, (3-4) (1994), pp. 477–489.

    Google Scholar 

  41. H. Yoshimura et al., “Ultra-fine Equiaxed Grain Refinement and Improvement of Mechanical Properties of (a+β) Type Titanium Alloys by Hydrogenation, Hot Working, Heat Treatment and Dehydrogenation,” Mater. Trans. JIM, 35 (4) (1994), pp. 266–272.

    Google Scholar 

  42. H. Yoshimura, K. Kimura, and M. Hayashi, Ultra-fine Equiaxed Grain Refinement of Titanium Alloys by Hydrogenation, Hot Working, Heat Treatment and Dehydrogenation, Nippon Steel technical report no. 62 (1994), pp. 80–84.

    Google Scholar 

  43. I.O. Bashkin et al., “The Effect of Strain Rate on the Hydrogen-Enhanced Plasticity of Titanium Alloy VT20 in the Range 500 to 800°C,” Phys. Met. Metallogr., 69 (2) (1990), pp. 167–174.

    Google Scholar 

  44. O.N. Senkov and J.J. Jonas, “Effect of Slrain Rate and Temperature on the Flow Stress of β-Phase Titanium Hydrogen Alloys,” Metal. & Mater. Trans. A, 27 (5) (1996), pp. 1303–1312.

    Google Scholar 

  45. A.A. Hin et al., “Effect of Hydrogen on Diffusion Mobility of Atoms in the Beta-Phase of Titanium Alloys,” Russian Metallurgy (5) (1994), pp. 74–77.

    Google Scholar 

  46. Yu.A. Aksyonov et al., “Influence of Hydrogen on the Ductility and Resistance to Deformation of Commercial T Titanium VTI-0 at Temperatures up to 750°C,” Phys. Metals & Metallography, 67 (5) (1989), pp. 157–163.

    Google Scholar 

  47. I.O. Bashkin et al., “Influence of Hydrogen on the Ductility and Resistance to Deformation of Titanium Alloy VT6 at Temperatures up to 930°C,” Phys. Metals & Metallography, 69 (5) (1990), pp. 158–164.

    Google Scholar 

  48. B.A. Kolachev et al., Titanium ′92 Science and Technology, vol. 1, ed. F.H. Froes and I.L. Caplan (Warrendale, PA TMS, 1993), pp. 861–868.

    Google Scholar 

  49. O.N. Senkov and J.J. Jonas, “Effect of Hydrogen Content on the Deformation Behavior ofTitanium-Hydrogen Alloys,” Eighth World Conference on Titanium, (London: Institute of Materials, 1995) in press.

    Google Scholar 

  50. I.O. Bashkin, E.I. Rabkin, and B.B. Straumal, “Titanium Diffusion in Zirconium-Hydrogen and Zirconium-Deiterium Systems,” Fizika Metallov i Metallovedenie (3) (1992), pp. 73–80.

    Google Scholar 

  51. O.N. Senkov et al., “Peculiarities of Plastic Flow of Hydrogen-Modified Titanium Alloy VT20 in the Temperature Range 823 to 1073 K,” Phys. Met. Metallogr., 70 (1) (1990), pp. 111–119.

    Google Scholar 

  52. Z. Shaoqing and Z. Linruo, “Effect of Hydrogen on the Superplasticity and Microstructure of Ti-6Al-4V Alloy,” J. Alloys & Compounds, 218 (2) (1995), pp. 233–236.

    Google Scholar 

  53. B. Gong, C.B. Zhang, and Z.H. Lai, “Improvement of Superplastic Properties of Ti-6Al-4V Alloy by Temporary Alloying with Hydrogen,” J. Mater. Sci. Letters, 13 (21) (1994), pp. 1561–1563.

    CAS  Google Scholar 

  54. T.L. Mackay, S.M.L. Sastry, and C.E Yolton, U.S. technical report AFWAL-TR-80-4038, Air Force Materials Laboratory, Wright-Patterson AFB, Ohio (1980).

  55. B.A. Kolachev et al., “Favorable Effect of Hydrogen on Formability of Titanium Alloys,” Tekhnologiya Legkih Splavov (Light Alloy Technology) (7) (1974), pp. 32–35.

    Google Scholar 

  56. A.Y. Malkov, B.A. Kolachev, and I.D. Nizkin, “Effect of Hydrogen on Ductility of a VT16 Alloy,” Izv. VUZ, Tsvetnaya Metallurgiya (6) (1990), pp. 96–100.

    Google Scholar 

  57. B.A. Kolachev et al., “On the Possibility of Temperature Decreasing for Hot Heating of Bolts Made ofVT16 Titanium Alloy by Reversible Hydrogenation,” Izvestiya AN SSSR: Metally (3) (1991), pp. 67–69.

    Google Scholar 

  58. B.A. Kolachev and V.D. Talalaev, Titan (Titanium), vol. 1 (Moscow, Russia: Aviation Publishing House, 1993), p. 43.

    Google Scholar 

  59. L.S. Steele, D. Eylon, and F.H. Froes, “Microstructure Control of Titanium Aluminide Powder Compacts by Thermo-Chemical Treatment,” 1990 Advances in Powder Metallurgy (Princeton, NJ: MPIF, 1990), pp. 509–523.

    Google Scholar 

  60. F.H. Froes et al., Bull. Mater. Sci., (6) (1989), pp. 1–19.

    Google Scholar 

  61. L.S. Apgar and D. Eylon, “Microstructure Control of Titanium Aluminide Powder Compacts by Thermochemical Processing,” ISIJ International, 31 (8) (1991), pp. 915–921.

    CAS  Google Scholar 

  62. L.S. Apgar and D. Eylon, “Development of Ultrafine Microstructures in Titanium Aluminide Powder Compacts,” 1990 Advances in Powder Metallurgy (Princeton, NJ: MPIF, 1990), pp. 173–186.

    Google Scholar 

  63. K. Ameyama et al., “Injection Molding of Titanium Powder,” 1989 Advances in Powder Metallurgy, vol. 2 (Princeton, NJ: MPIF, 1989), pp. 121–126.

    Google Scholar 

  64. F.H. Froes et al., “Synthesis of Titanium Aluminide Intermetallics by Mechanical Alloying,” P/M in Aerospace, Defence and Demanding Applications (Princeton, NJ: MPIF, 1993), pp. 3–24.

    Google Scholar 

  65. D.K. Mukhopadhyay, C. Suryanarayana, and F.H. Froes, Second Int. Conf. on Structural Applications of Mechanical Alloying, ed. J.J. deBarbadillo, F.H. Froes, and R. Schwarz (Material Parks, OH: ASM, 1993), p. 131.

    Google Scholar 

  66. S.T. Ahn, Y.G. Kim, and J.Y. Lee, “Formation of the Amorphous Phase in Zr2Al by Hydrogen Absorption and the Effect of Titanium Substitution on the Amorphization Behavior,” Journal of Alloys & Compounds, 186 (1) (1992), pp. 45–52.

    CAS  Google Scholar 

  67. A. Memezawa, K. Aoki, and T. Matsumoto, “Amorphization of Ti-Zr Powders by the Collaborated Interaction of Mechanical Alloying and Hydrogenation,” Scripta Metall. Mater., 28 (3) (1993), pp. 361–365.

    CAS  Google Scholar 

  68. M. Barkco et al., “Structural and Thennodynamic Aspects of Glass Formation in Cu-Ti-H: Role of Hydrogen in Mechanical Alloying,” J. Non-Crystalline Solids, 156-158 (2) (1993), pp. 527–531.

    Google Scholar 

  69. K. Aoki, A. Memezawa, and T. Masumoto, “Amorphization of the TiV System by Mechanical Alloying and Mechanical Grinding in a Hydrogen and Nitrogen Atmosphere,” J. Mater. Research, 9 (1) (1994), pp. 39–46.

    CAS  Google Scholar 

  70. R. Boyer, G. Welsch, and E.W. Collings, ed., Materials Properties Handbook: Titanium Alloys (Materials Park, OH: ASM, 1994).

    Google Scholar 

  71. M. Niinomi et al., “Fracture Characteristics of Ti-6Al-4V and Ti-5Al-2.5Fe with Refined Microstructure using Hydrogen,” Metall. Mater. Trans. A, 26 (5) (1995), pp. 1141–1151.

    Google Scholar 

  72. R.J. Smickley and E. Sardi, U.S. patent 4505764 (March 19, 1985).

  73. B.A. Kolachev, V.K. Nosov, and L.A. Lebedev, Izv. VUZ, Tsvetnaya Metallurgiya (3) (1985), pp. 104–107.

    Google Scholar 

  74. B.A. Kolachev and A.A. Hin, “Thermohydrogen Processing of Titanium Alloys,” Metallovedenie i Obrabotka Titanovih i Zharoprochnih Splavov (Moscow: All-Russian Institute of Light Alloys, 1991), pp. 132–142.

    Google Scholar 

  75. F.H. Froes, D. Eliezer, and H.G. Nelson, “Hydrogen Effects in Titanium,” Fifth Intern. Conf. on Hydrogen Effects on Metals, ed. N.R Moody and R.W. Thompson (Warrendale, PA: TMS, 1995).

    Google Scholar 

  76. C.E. Yolton and F.H. Froes, U.S. patent 4,219,357 (August 26, 1980).

  77. W.Y. Chu and A.W. Thompson, Hydrogen Effects on Material Behaviour, eds. N.R Moody and A.W. Thompson (Warrendale, PA: TMS, 1990), p. 285.

    Google Scholar 

  78. D.S. Shong, et al., “Hot Isostatic Pressing of g-TiAl Alloy and ψ-TiAl Metal Matrix Composites,” 1989 Advances in Powder Metallurgy (Princeton, NJ: MPIF, 1989), pp. 359–371.

    Google Scholar 

  79. J.A. Graves et al., Scripta Metal., 21 (1987), pp. 567–572.

    CAS  Google Scholar 

  80. M. Saqib et al., “Microstructure and Phase Morphology During Thermochemical Processing of Alpha(2)-Based Titanium Aluminide Castings,” Mater. Sci. Eng. A, A201 (1-2) (1995), pp. 169–181.

    CAS  Google Scholar 

  81. K. Yang and D.V. Edmonds, “Thermochemical Processing with Hydrogen of Super- α2 Alloy,” J. Mater. Sci., 29 (8) (1994), pp. 2126–2132.

    CAS  Google Scholar 

  82. K. Yang and D.V. Edmonds, “Effect of Hydrogen as a Temporary Alloying Element on the Microstructure of a Ti3Al Intermetallic,” Scripta Metal. Mater., 28 (1) (1993), pp. 71–76.

    CAS  Google Scholar 

  83. R.G. Vogt, Private communication, Howmet Corp., Whitehall, MI (1988).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Senkov, O.N., Jonas, J.J. & Froes, F.H. Recent advances in the thermohydrogen processing of titanium alloys. JOM 48, 42–47 (1996). https://doi.org/10.1007/BF03222997

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03222997

Keywords

Navigation