Skip to main content
Log in

Modeling mechanical alloying: Advances and challenges

  • Titanium and Intermetallics
  • Commentary
  • Published:
JOM Aims and scope Submit manuscript

Abstract

While mechanical alloying is a commercial entity for oxide-dispersion-strengthened superalloys, its application to other systems has run into a number of scientific and commercial barriers. In part, this is due to the inadequate scientific underpinning. This article reviews the status of the modeling of the mechanical alloying processes and suggests an approach to improving current knowledge of the process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.S. Benjamen and T. Volin, Met. Trans., 5 (1974), p. 1929.

    Google Scholar 

  2. A.E. Ermakov, E.E. Yurchikov, and V.A. Barinov, Fiz. Metal. Metalloved., 52 (1981), p. 1181.

    Google Scholar 

  3. A.E. Ermakov, V.A. Barinov, and E.E. Yurchikov, Fiz. Metal. Metalloved., 54 (1982), p. 935.

    CAS  Google Scholar 

  4. C.C. Koch et al., Appl. Phys. Lett., 43 (1983), p. 1017.

    CAS  Google Scholar 

  5. W.L. Johnson, Progr. Mater. Sci., 30 (1986), p. 81.

    CAS  Google Scholar 

  6. A.W. Weeber and H. Bakker, Physica, 153B (1988), p. 93.

    Google Scholar 

  7. C.C. Koch, Mater. Sci. Forum, 88-90 (1992), p. 243.

    CAS  Google Scholar 

  8. E. Ma and M. Atzmon, Mater. Chern. & Phys., 39 (1995), p. 249.

    CAS  Google Scholar 

  9. T.H. Courtney, Reviews in Particulate Materials, 2 (1994), p. 63.

    CAS  Google Scholar 

  10. D.R. Maurice and T.H. Courtney, Metall. Trans., 21A (1990), p. 289.

    CAS  Google Scholar 

  11. D.R. Maurice and T.H. Courtney, Metall. Trans., 25A (1994), p. 147.

    CAS  Google Scholar 

  12. D.R. Maurice and T.H. Courtney, Metall. Trans., 26A (1995), pp. 2431, 2437.

    CAS  Google Scholar 

  13. H. Hashimoto and R. Watanabe, Mater. Sci. Forum, 88-90 (1992), p. 89.

    CAS  Google Scholar 

  14. N.N. Thadhani, Progr. Mater. Sci., 37 (1993), p. 117.

    CAS  Google Scholar 

  15. N.N. Thadhani, J. Appl. Phys., 76 (1994), p. 2129.

    CAS  Google Scholar 

  16. M. Li, W.L. Johnson, and W.A. Goddard, Mater. Sci. Forum, 179-181 (1995), p. 855.

    CAS  Google Scholar 

  17. M. Li and W.L. Johnson, Phys. Rev. Lett., 70 (1993), p. 1120.

    Google Scholar 

  18. V. Rosato and C. Massobrio, J. Alloys & Compounds, 194 (1993), p. 439.

    CAS  Google Scholar 

  19. D. Wolf et al., J. Mater. Research, 5 (1990), p. 286.

    CAS  Google Scholar 

  20. N.Q. Lam and P.R Okamoto, MRS Bulletin, 29 (7) (1994), p. 41.

    Google Scholar 

  21. H.-J. Fecht and W.L. Johnson, Mater. Sci. Eng., A133 (1991), p. 427; H.-J. Fecht, Mater. Sci. Eng., A179/A180 (1994), p. 491; H.-J. Fecht, Nature, 356 (1992), p. 133.

    CAS  Google Scholar 

  22. W.L. Johnson, Mo Li, and C.E. Krill III, J. Non-Cryst. Solids, 156/158 (1993), p. 481.

    Google Scholar 

  23. C. Ettl and K. Samwer,Mater. Sci. Eng., A178 (1994), p. 245.

    Google Scholar 

  24. R. Devanathan et al., J. Alloys & Compounds, 194 (1993), p. 447.

    CAS  Google Scholar 

  25. P. Bellon and R.S. Averback, Phys. Rev. Lett., 74 (1995), p. 1819.

    CAS  Google Scholar 

  26. P.Yu. Butyagin, Mat. Sci. Forum, 88-90 (1992), p. 695.

    CAS  Google Scholar 

  27. V.V. Alekseenko and G.R. Karagedov, Neorg. Mater., 30 (1994), p. 1279 (in Russian).

    CAS  Google Scholar 

  28. A.R. Miedema, R.F. de Chatel, and F.R. de Boer, Physica, 100B (1980), p. 1.

    Google Scholar 

  29. A.K. Niessen et al., CALPHAD, 7 (1983), p. 51.

    CAS  Google Scholar 

  30. A.W. Weeber, J. Phys. F, 17 (1987), p. 809.

    CAS  Google Scholar 

  31. P.I. Loefl, A.W. Weeber, and A.R Miedema, J. Less-Common Met., 140 (1988), p. 299; R. Coehoorn et al., J. Less-Common Met., p. 30

    Google Scholar 

  32. L. Kaufman and H. Bernstein, Computer Calculations of Phase Diagrams (New York: Academic Press, 1970).

    Google Scholar 

  33. R.B. Schwarz, P. Nash, and D. Turnbull, J. Mater. Res., 2 (1987), p. 456.

    CAS  Google Scholar 

  34. R. Bormann, F. Gartner, and K. Zoeltzer, J. Less-Common Met., 145 (1988), p. 19.

    CAS  Google Scholar 

  35. R. Najafabadi et al.. J. Appl. Phys., 74 (1993), p. 3144.

    CAS  Google Scholar 

  36. G.V. Kidson, J. Nucl. Mater., 3 (1961), p. 21.

    CAS  Google Scholar 

  37. A.M. Gusak and K.P. Gurov, Fiz. Met. Metalloved., 63 (1982), p. 842 (in Russian).

    Google Scholar 

  38. D.S. Williams, R.A. Rapp, and J.P. Hirth, Thin Solid Films, 142 (1986), p. 47.

    CAS  Google Scholar 

  39. Ya.Ye. Geguzin et al., Phys. Met. Metallogr., 47 (1980), p. 127.

    Google Scholar 

  40. U. Gosele and K.N. Tu, J. Appl. Phys., 53 (1982), p. 3252.

    Google Scholar 

  41. U. Gosele and K.N. Tu, J. Appl. Phys., 66 (1989), p. 2619.

    Google Scholar 

  42. B.M. Khusid and B.B. Khina,Physical Review B, 44, (1991), p. 10778.

    Google Scholar 

  43. P.J. Desre and A.R. Yavari, Phys. Rev. Lett., 64 (1990), p. 1533; P.J. Desre and A.R. Yavari, Phys. Rev. Lett., 65 (1990), p. 2571.

    CAS  Google Scholar 

  44. P.J. Desre and A.R. Yavari,Mater. Sci. Forum, 88-90 (1992), p. 43.

    Google Scholar 

  45. A.M. Gusak and K.P. Gurov, Solid State Phenomena, 23/24 (1992), p. 117.

    Google Scholar 

  46. R.J. Highmore and A.L. Greer, Mater. Lett., 6 (1999), p. 401.

    Google Scholar 

  47. R.J. Highmore, Phil. Mag. B, 62 (1990), p. 455.

    CAS  Google Scholar 

  48. A.L. Greer, Phil. Mag. B, 61 (1990), p. 525.

    CAS  Google Scholar 

  49. W.J. Meng, C.W. Nieh, and W.L. Johnson, Appl. Phys. Lett., 51 (1987), p. 1693.

    CAS  Google Scholar 

  50. E. Ma et al., Appl. Phys. Lett., 53 (1988), p. 2033.

    CAS  Google Scholar 

  51. D.G. Morris and A. Benghalem, Mater. Sci. Forum, 179/181 (1995), p. 11.

    Google Scholar 

  52. H. Bakker, C.F. Zhou, and H. Yang, Progr. Mater. Sci., 39 (1995), p. 159.

    CAS  Google Scholar 

  53. A.L. Greer, J.. Magnetism & Magnet. Mater., 126 (1993), p. 89.

    CAS  Google Scholar 

  54. G. Mazzone and M. Vittori Antisari, J. Appl. Phys., 77 (1995), p. 5020.

    CAS  Google Scholar 

  55. J.J. Hoyt and L.N. Brush, J. Appl. Phys., 78 (1995), p. 1589.

    CAS  Google Scholar 

  56. A.M. Gusak and A.A. Bogatyrev, Metallofizika i Noveish. Tekhnol., 16 (1994), p. 28 (in Russian).

    Google Scholar 

  57. E. Ma and M. Atzmon, Modern Phys. Lett., 6 (1992), p. 127.

    CAS  Google Scholar 

  58. B.B. Khina, B.M. Khusid, and P.G Lovshenko, Proc. Int. Conf on solid-to-solid Phase Transformations, ed. W.C. Johnson et al. (Warrendale, PA: TMS, 1994), p. 975.

    Google Scholar 

  59. A.G Merzhanov, Combustion Sci. & Technol., 98 (1994), p. 307.

    CAS  Google Scholar 

  60. A. Calka and A.P. Radlinski, Mater. Sci. Eng., A134 (1991), p. 1350.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khina, B.B., Froes, F.H. Modeling mechanical alloying: Advances and challenges. JOM 48, 36–38 (1996). https://doi.org/10.1007/BF03222995

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03222995

Keywords

Navigation