Skip to main content
Log in

Advances in the computational modeling of thermal-plasma processing

  • Thermal-Plasma Processing
  • Overview
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Significant advances have been made in the theoretical foundations and the associated computational modeling of thermal-plasma processes, particularly in the areas of nonequilibrium effects, multicomponent transport, chemical kinetics, and radiative transport. The comprehensive computational tools developed in the course of this work have been used to perform numerical simulations of a variety of complex thermal-plasma processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.F. Baddour and R.S. Timmins, eds., The Application of Plasmas to Chemical Processing (Cambridge, MA: MIT Press, 1967).

    Google Scholar 

  2. H.V. Boenig, Plasma Science and Technology (Ithaca, NY: Cornell University Press, 1982).

    Google Scholar 

  3. J.W. Coburn, R.A. Gottscho, and D.W. Hess, eds., Plasma Processing (Pittsburgh, PA: MRS, 1986).

    Google Scholar 

  4. K.C. Hsu, K. Etemadi and E. Pfender, J. Appl. Phys., 54 (1982), p. 1293.

    Google Scholar 

  5. K.C. Hsu and E. Pfender, Plasma Chem. Plasma Process., 4 (1984), p. 219.

    CAS  Google Scholar 

  6. Y.C. Lee, Modeling Work in Thermal Plasma Processing, Ph.D. thesis, University of Minnesota (1984).

    Google Scholar 

  7. Y.P. Chyou, Modeling of Thermal Plasma Systems, Ph.D. thesis, University of Minnesota (1987).

    Google Scholar 

  8. P.C. Huang and E. Pfender, Plasma Chem. Plasma Process., 11 (1991), p. 129.

    CAS  Google Scholar 

  9. S. Palket al., Plasma Chem. Plasma Process., 11 (1991), p. 229.

    Google Scholar 

  10. X. Chen and E. Pfender, Plasma Chem. Plasma Process., 11 (1991), p. 103.

    Google Scholar 

  11. C.H. Chang and J.D. Ramshaw, Phys. Plasmas, 1 (1994), p. 3698.

    CAS  Google Scholar 

  12. C.H. Chang and E. Pfender, IEEE Trans. Plasma Sci., 18 (1990), p. 958.

    Google Scholar 

  13. D.M. Chen, K.C. Hsu, and E. Pfender, Plasma Chem. Plasma Process., 1 (1981), p. 295.

    CAS  Google Scholar 

  14. K.C. Hsu and E. Pfender, J. Appl. Phys:, 54 (1983), p. 4359.

    CAS  Google Scholar 

  15. C.H. Chang and E. Pfender, Plasma Chem. Plasma Process., 10 (1990), p. 473.

    CAS  Google Scholar 

  16. C.H. Chang and E. Pfender, Plasma Chem. Plasma Process., 10 (1990), p. 493.

    CAS  Google Scholar 

  17. S.H. Paik and E. Pfender, Plasma Chem. Plasma Process., 10 (1990), p. 167.

    CAS  Google Scholar 

  18. C.H. Chang and J.D. Ramshaw, Plasma Chem. Plasma Process., 16 (1996), p. 5S.

    CAS  Google Scholar 

  19. A.B. Murphy, Phys. Rev. E, 48 (1993), p. 3594.

    CAS  Google Scholar 

  20. J.D. Ramshaw and C.H. Chang. Plasma Chem. Plasma Process., 11 (1991), p. 395.

    Google Scholar 

  21. J.D. Ramshaw and C.H. Chang, Plasma Chem. Plasma Process., 13 (1993), p. 489.

    CAS  Google Scholar 

  22. J.D. Ramshaw, J. Non-Equilib. Thermodyn., 18 (1993), p. 121.

    CAS  Google Scholar 

  23. C.H. Chang and J.D. Ramshaw, Plasma Chem. Plasma Process., 13 (1993), p. 189.

    CAS  Google Scholar 

  24. J.R. Fincke et al., Int. J. Heat Mass Transfer, 37 (1994), p. 1673.

    Google Scholar 

  25. M. Meyyappan and T.R. Govindan, J. Appl. Phys., 78 (1995), p. 6432.

    CAS  Google Scholar 

  26. P. Domingo, A. Bourdon, and P. Vervisch, Phys. Plasmas, 2 (1995), p. 2853.

    CAS  Google Scholar 

  27. J.D. Rarnshaw and C.H. Chang, “Multicomponent Diffusion in Two-Temperature Magnetohydrodynamics,” Phys. Rev. E, submitted.

  28. S.L. Girshick, Plasma Sources Sci. Technol., 3 (1994), p. 388.

    CAS  Google Scholar 

  29. S.L. Girshick et al., Plasma Chem. Plasma Process., 13 (1993), p. 169.

    CAS  Google Scholar 

  30. B.Q. Yu and S.L. Girshick, J. Appl. Phys., 75 (1994),p. 3914.

    CAS  Google Scholar 

  31. R.J. Kee, J.A. Miller, and T.H. Jefferson, CHEMKIN: A General-Purpose, Problem-Independent, Transportable, Fortran Chemical Kinetics Code Package, report SAND83-8209, Sandia National Laboratory (1983).

    Google Scholar 

  32. J.D. Ramshaw and C.H. Chang. J. Comput. Phys., 116 (1995), p. 359.

    CAS  Google Scholar 

  33. P.C. Huang, J. Heberlein, and E. Pfender, Plasma Chem. Plasma Process., 15 (1995), p. 25.

    CAS  Google Scholar 

  34. W.L.T. Chen and E. Pfender, Enthalpy Probe and Spectroscopic Measurements in Thermal Plasma Jets, High Temperature Laboratory Report, University of Minnesota (March 1990).

    Google Scholar 

  35. J. Menart, E. Pfender, and J. Heberlein, J. Quant. Spectrose. Radiat. Transfer, in press.

  36. J. Menart, J. Heberlein, and E. Plender, Plasma Chem. Plasma Process., 16 (1996), pp. 2–5S.

    Google Scholar 

  37. J.D. Ramshaw and C.H. Chang. Plasma Chem. Plasma Process., 12 (1992), p. 299.

    CAS  Google Scholar 

  38. C.H. Chang, Proc. International Thermal Spray Conference (ITSC ′92) (Materials Park, OH: ASM, 1992), p. 793.

    Google Scholar 

  39. S.L. Girshick and C.-P. Chiu, Plasma Chem. Plasma Process., 9 (1989), p. 355.

    CAS  Google Scholar 

  40. S.L. Girshick and C.-P. Chiu, J. Aerosol Sci., 21 (1990), p. 641.

    CAS  Google Scholar 

  41. C. George et al., Plasma Chem. Plasma Process., 16 (1996), p 43.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, C.H., Pfender, E. Advances in the computational modeling of thermal-plasma processing. JOM 48, 46–48 (1996). https://doi.org/10.1007/BF03222967

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03222967

Keywords

Navigation