Skip to main content
Log in

The influence of the crystallographic texture on the biaxial stretchability of AA 5182 sheet

  • Aluminum Packaging Alloys
  • Research Summary
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Crystallographic texture plays an important role in mechanical anisotropy. For a sheet material in biaxial stretching, texture has a significant effect on the formation of strain localization. In this work, the effects of different textures on the biaxial stretchability of AA 5182 sheet materials were studied. The results indicate that for textured AA 5182 sheet materials, the biaxial stretchabilities were closely associated with the crystallographic texture. It was found that the Olsen cup values were closely correlated to the calculated strain path values and limit strains. For a sheet material with a proper texture combination, the biaxial stretchability is greatly improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Sowerby and J.L. Duncan, Int. J. Mech. Sci., 13 (1971), pp. 217–229.

    Google Scholar 

  2. F. Barlat, Mater. Sci. Eng., 91 (1987), pp. 55–72.

    CAS  Google Scholar 

  3. W.F. Hosford and R.M. Caddell, Metal Forming: Mechanics and Metallurgy, 2nd ed. (New York: Prentice Hall, 1993), pp. 29–40.

    Google Scholar 

  4. F. Barlat and O. Richmond, Mater. Sci. Eng., 95 (1987), pp. 15–29.

    Google Scholar 

  5. H.J. Bunge, M. Schulze, and D. Grzesik, Acta Appl. Engng. Sci., 19 (1981), pp. 737–745.

    Google Scholar 

  6. P.V. Houtte, G. Cauwenberg, and E. Aernoudt, Mater. Sci. Eng., 95 (1987), pp. 115–124.

    Google Scholar 

  7. C.S. Da C. Viana, J.S. Kallend, and G.J. Davies, Int. J. Mech. Sci., 21 (1979), pp. 355–371.

    Google Scholar 

  8. B.L. Adams and K.L. Murty, Mater. Sci. Eng., 70 (1985), pp. 181–190.

    CAS  Google Scholar 

  9. J.L. Bassani, Int. J. Mech. Sci., 19 (1977), pp. 651–660.

    Article  Google Scholar 

  10. G.R. Canova et al., J. Mech. Phys. Solids, 33 (1985), pp. 371–397.

    Google Scholar 

  11. Ph. Lequeu and J.J. Jonas, Metall. Trans. A, 19A (1988), pp. 105–120.

    CAS  Google Scholar 

  12. D. Daniel and J.J. Jonas, Metall. Trans. A, 21A (1990), pp. 331–343.

    CAS  Google Scholar 

  13. Ph. Lequeu et al., Acta Metall., 35 (1987), pp. 439–451.

    CAS  Google Scholar 

  14. Ph. Lequeu et al., Acta Metall., 35 (1987), pp. 1159–1174.

    CAS  Google Scholar 

  15. S.T. Mahmood and K.L. Murty, J. Mat. Eng., 11 (1989), pp. 315–329.

    CAS  Google Scholar 

  16. Z. Marciniak and K. Kuczynski, Int. J. Mech. Sci., 9 (1967), pp. 609–620.

    Google Scholar 

  17. A. Parmar and P.B. Mellor, Int. J. Mech. Sci., 20 (1978), pp. 385–391.

    Google Scholar 

  18. P. Bate, Int. J. Mech. Sci., 26 (1984), pp. 373–384.

    Google Scholar 

  19. Z. Marciniak, K. Kuczynski, and T. Pokora, Int. J. Mech. Sci., 15 (1973), pp. 789–805.

    Google Scholar 

  20. A. Graf and W.F. Hosford, Metall. Trans. A, 21A (1990), pp. 87–94.

    CAS  Google Scholar 

  21. R. Hill, Proc. Soc. London Ser. A, 193 (1948), 281–297.

    CAS  Google Scholar 

  22. G.I. Taylor, J. Inst. Met., 62 (1938), pp. 307–324.

    Google Scholar 

  23. J.F.W. Bishop and R. Hill, Phil. Mag., 42 (1951), pp. 414–427.

    CAS  Google Scholar 

  24. J.F.W. Bishop and R. Hill, Phil. Mag., 42 (1951), pp. 1298–1307.

    CAS  Google Scholar 

  25. J.F.W. Bishop, Phil. Mag., 44 (1953), pp. 51–64.

    CAS  Google Scholar 

  26. R. Hill, Math. Proc. Cambridge Philos. Soc., 85 (1979), pp. 179–191.

    Google Scholar 

  27. W.P. Hosford, 7th North American Metalworking Conference Proceedings (Dearborn, MI: SME, 1979), pp. 191–197.

    Google Scholar 

  28. R.W. Logan and W.F. Hosford, Int. J. Mech. Sci., 22 (1980), 419–430.

    Google Scholar 

  29. H.J. Bunge, Texture Analysis in Material Science (Boston, MA: Butterworths, 1982).

    Google Scholar 

  30. R.J. Roe, J. Appl. Physics, 36 (1965), 2024–2031.

    CAS  Google Scholar 

  31. K. LÅcke et al., Acta Metall., 29 (1981), pp. 167–185.

    Google Scholar 

  32. P.V. Houtte, Textures and Microstructures, 7 (1987), pp. 29–72.

    Google Scholar 

  33. W.F. Hosford, Textures in Research and Practice, ed. J. Grewen and G. Wassermann (1968), pp. 414–435.

    Google Scholar 

  34. K.W. Neale and E. Chater, Int. J. Mech. Sci., 22 (1980), pp. 563–574.

    Google Scholar 

  35. D.V. Wilson and P.M.S. Rodrigues, Metall. Trans. A, 17A (1986), pp. 367–370.

    CAS  Google Scholar 

  36. D.V. Wilson, Forming Limit Diagrams: Concepts, Methods, and Applications, ed. R.H. Wagoner, K.S. Chan, and S.P. Keeler (Warrendale, PA: TMS, 1989), pp. 323–337.

    Google Scholar 

  37. Y. Zhou and K.W. Neale, Acta Metall., 42 (1994), pp. 2175–2189.

    CAS  Google Scholar 

  38. A.K. Ghosh and S.S. Hecker, Metall. Trans., 5 (1974), pp. 2161–2164.

    CAS  Google Scholar 

  39. M. Huang and J.C. Gerdeen, Computer Applications In Shaping & Forming of Materials, ed. by M.Y. Demeri (Warrendale, PA: TMS, 1992), pp. 239–249.

    Google Scholar 

  40. P. Chen and J.C. Gerdeen, Forming Limit Diagrams: Concepts, Methods, and Applications, ed. R.H. Wagoner, K.S. Chan, and S.P. Keeler, (Warrendale, PA: TMS, 1989), pp. 239–252.

    Google Scholar 

  41. W. Flugge, Stresses in Shells, 2nd ed. (New York: Springer-Verlag, 1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ren, B., Morris, J.G. & Beaudoin, A.J. The influence of the crystallographic texture on the biaxial stretchability of AA 5182 sheet. JOM 48, 22–25 (1996). https://doi.org/10.1007/BF03222960

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03222960

Keywords

Navigation