Skip to main content
Log in

Codepositing elements by halide-activated pack cementation

  • Corrosion Prevention
  • Overview
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The codeposition of two or more elements in a halide-activated cementation pack is inherently difficult because of large differences in the thermodynamic stabilities for their volatile halides. However, through a computer-assisted analysis of the pack equilibria, combinations of suitable master alloys and activator salts can be identified. The codeposition of chromium plus aluminum or chromium plus silicon by pack cementation has yielded diffusion coatings with excellent resistance to high-temperature oxidation and corrosion fora wide range of alloy substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Wagner, Corr. Sci., 5 (1965), p. 751.

    CAS  Google Scholar 

  2. G. Allison and M.K. Hawkins, GEC Rev., 17 (1914), p. 947.

    CAS  Google Scholar 

  3. M.G. Hocking, V. Vasantasree, and P.S. Sidky, Metal & Ceramic Coatings: Production, High Temperature Properties and Applications (New York: John Wiley & Sons, 1989), p. 174.

    Google Scholar 

  4. R.A. Rapp, D. Wang, and T. Weisert, “Simultaneous Chromizing-Aluminizing of Iron and Iron-Base Alloys by Pack Cementation,” High Temperature Coatings, ed. M. Khobaib and R.C. Krutenat (Warrendale, PA: TMS, 1987), p. 131.

    Google Scholar 

  5. D.M. Miller et al., Oxid. Met., 29 (1988), p. 239.

    CAS  Google Scholar 

  6. M.A. Harper and R.A. Rapp, “Codeposition of Chromium and Silicon in Diffusion Coatings for Iron-Base Alloys Using Pack Cementation,” Surface Modification Technologies IV, ed. T.S. Sudarshan, D.G. Bhat, and M. Jeandin (Warrendale, PA: TMS, 1991), p. 415.

    Google Scholar 

  7. R. Bianco and R.A. Rapp, “Simultaneous Chromizing and Aluminizing of Nickel-Base Superalloys with Reactive Element Additions,” High Temperature Materials Chemistry V, ed. W.B. Johnson and R.A. Rapp (Pennington, NJ: Electrochem. Soc., 1990), p. 211.

    Google Scholar 

  8. N. V. Bangaru and R.C. Krutenat, J. Vac. Sci. Tech., B2 (1984), p. 806.

    Google Scholar 

  9. H.W. Grunling and R. Bauer, Thin Solid Films, 95 (1982), p. 1.

    Google Scholar 

  10. S.R. Levine and R.M. Caves, J. Electrochem. Soc., 121 (1974), P. 1051.

    CAS  Google Scholar 

  11. B.K. Gupta, A.K. Sarkhel, and L.L. Seigle, Thin Solid Films, 39 (1976), p. 313.

    CAS  Google Scholar 

  12. B.K. Gupta and L.L. Seigle, Thin Solid Films, 73 (1980), p. 365.

    CAS  Google Scholar 

  13. F.J. Pennisi, N. Kandasamay, and L.L. Seigle, Thin Solid Films, 84 (1981), p. 17.

    Google Scholar 

  14. L.L. Seigle, Surface Engineering, ed. R. Kossowsky and S.C. Singhal (Boston, MA: Martinus Nijhoff Publishers, 1984), p. 345.

    Google Scholar 

  15. B. Nicri and L. Vandenbulke, J. Less-Common Met., 95 (1983), p. 55.

    Google Scholar 

  16. S.C. Kung and R.A. Rapp, J. Electrochem. Soc., 135 (1988), p. 731.

    CAS  Google Scholar 

  17. S.C. Kung and R.A. Rapp, Oxid. Met., 32 (1989), p. 89.

    CAS  Google Scholar 

  18. V.A. Ravi, P. Choquet, and R.A. Rapp, “Thermodynamics of Simultaneous Chromizing-Aluminizing in Halide-Acti vated Cementation Packs,” International Meeting on Advanced Materials, vol. 4 (Pittsburgh, PA: MRS, 1989), p. 483.

    Google Scholar 

  19. J.E. Restall, U.S. patent 4,687,684 (1987).

  20. P.N. Walsh, Proceeding of the Fourth International Conference on Chemical Vapor Deposition, ed. G.F. Wakefield and J.M. Blocher (Pennington, NJ: Electrochem. Soc., 1973), p. 147.

    Google Scholar 

  21. W. Johnson, K. Komarek, and E. Miller, Trans. AIME, 242 (1968), p. 1685.

  22. G.H. Marijinissen, First International Conference on Surface Engineering, vol. III (Brighton, U.K.: 1985), p. 81.

    Google Scholar 

  23. H. Flynn, A.E. Morris, and D. Carter, “An Iterative Gas-Phase Removal Version of SOLGASMIX,” Proceedings of the 25th CIM Conference of Metallurgists (Toronto, Canada: TMS CIM, 1986).

    Google Scholar 

  24. R. Bianco, R.A. Rapp, and N.S. Jacobson, submitted to Oxidation of Metals.

  25. R.L. McCarron, N.R. Lindblad, and D. Chatterji, Corrosion, 32 (1976), p. 476.

    CAS  Google Scholar 

  26. C.A. Barrett, Oxid. Met., 30 (1988), p. 361.

    CAS  Google Scholar 

  27. J. Jedlinski and S. Mrowec, Mater. Sci. Eng., 87 (1987), p. 281.

    CAS  Google Scholar 

  28. G. W. Goward and D.H. Boone, Oxid. Met., 3 (1971), 475.

    CAS  Google Scholar 

  29. J.H. DeVan, “Oxidation Behavior of Fe3Al and Derivative Alloys,” Oxidation of High Temperature Intermetallics, ed. T. Grobstein and J. Doychak (Warrendale, PA: TMS, 1989), p. 107.

    Google Scholar 

  30. F.D. Gelb and R.A. Rapp, “Diffusion Coatings for Iron Aluminide Fe3Al via Halide-Activated Pack Cementation,” Processing and Manufacturing of Advanced Materials for High Temperature Applications, ed. T.S. Srivatsan and V.A. Ravi (Warrendale, PA: TMS, in press).

  31. C.T. Liu, E.H. Lee, and C.G. McKamey, Scripta Met., 23 (1990), p. 875.

    Google Scholar 

  32. J.L. Smialek, J. Doychak, and D.J. Gaydosh, Oxid. Met., 34 (1990), p. 259.

    CAS  Google Scholar 

  33. M.A. Harper and R.A. Rapp, “Chromized/Siliconized Diffusion Coatings for Iron-Base Alloys by Pack Cementation” (Paper number 66, presented at Corrosion 91, Cincinnati, OH, March, 1991).

    Google Scholar 

  34. W. Christl, A. Rahmel, and M. Schutze, Oxid. Met., 31 (1989), p. 1.

    CAS  Google Scholar 

  35. K. Natesan and J.H. Park, “Role of Alloying Additions in the Oxidation-Sulfidation of Fe-Base Alloys,” Corrosion & Particle Erosion at High Temperatures, ed. V. Srinivasan and K. Vedula (Warrendale, PA: TMS, 1989), p. 49.

    Google Scholar 

  36. M.A. Harper and R.A. Rapp, “Chromized/Siliconized Pack Cementation Diffusion Coatings for Heat Resistant Alloys,” First International Conference on Heat-Resistant Materials (Materials Park, OH: ASM, to be published).

  37. R.A. Perkins and G.H. Meier, JOM, 42 (1990), p. 17.

    Article  CAS  Google Scholar 

  38. A.J. Mueller et al., submitted to J. Electrochem. Soc.

  39. J. Schlichting and S. Neumann, J. Non-Crystal. Solids, 48 (1982), p. 185.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bianco, R., Harper, M.A. & Rapp, R.A. Codepositing elements by halide-activated pack cementation. JOM 43, 68–73 (1991). https://doi.org/10.1007/BF03222724

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03222724

Keywords

Navigation