Skip to main content
Log in

Developments in physical chemistry and basic principles

  • Review of Extraction & Processing
  • Published:
JOM Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. S.G. Ko et al., “Preparation of Tungsten by the Self Propagating High Temperature Synthesis (SHS) Process,” Metallurgical Processes for Early Twenty First Century, Vol. I Basic Principles, ed. H.Y. Sohn (Warrendale, PA: TMS, 1994), pp. 189–195.

    Google Scholar 

  2. J.J. Moore et al., “The Combustion Synthesis of Advanced Materials,” JOM, 46(11) (1994), pp. 72–78.

    CAS  Google Scholar 

  3. T.Y. Urn and R. Watanabe, “Production of Al/TiAl3 Composite by In-Situ Infiltration Combustion Synthesis,” J. Japan Inst. Metals, 58 (1994), pp. 559–563.

    Google Scholar 

  4. H. Nakata, T. Choh, and N. Kanetake, “Development of Spontaneous Infiltration In-Situ Production Process for Fabrication of Particulate Reinforced Aluminum Composites,” J. Japan Inst. Metals, 58 (1994), pp. 803–809.

    CAS  Google Scholar 

  5. B.S. Kang et al., “Preparation of Ni Coated Alumina Composite Powder by Hydrometallurgical Reduction Process,” Control of Interfaces in Metal and Ceramics Composites, ed. R.Y. Lin and S.G. Fishman (Warrendale, PA: TMS, 1993), pp. 303–315.

    Google Scholar 

  6. Y.A. Chang et al., “Interfacial Stabilities of High-Temperature Composite Materials,” in Ref. 5, pp. 3–30.

    Google Scholar 

  7. M. Numata et al., “Kinetics and Morphology of Silicon Precipitation from Si2Cl6,” J. Japan Inst. Metals, 57 (1993), pp. 1404–1411.

    CAS  Google Scholar 

  8. D. Wei, M. Okido, and T. Oki, “Characteristics of Ti Films Electrodeposited from Molten Salts by a Pulse Current Method,” J. Japan Inst. Metals, 58 (1994), pp. 660–667.

    CAS  Google Scholar 

  9. Y. Umakoshi and W. Fujitani, “Observation of Intermetallic Phases Formed in Al/Au and Al/Cu Thin Film Couples Using Optical Reflectivity Technique,” J. Japan Inst. Metals, 58 (1994), pp. 1095–1100.

    CAS  Google Scholar 

  10. M. Yamabeet al., “Process Control in Metalorganic Chemical Vapor Deposition of CdTe,” Mater. Trans. JIM, 35 (1994), pp. 130–135.

    CAS  Google Scholar 

  11. N. Yoshikawa, K. Higashino, and A. Kikuchi, “Growth Rate of TiN Films by Chemical Vapour Deposition,” J. Japan Inst. Metals, 58 (1994), pp. 442–147.

    CAS  Google Scholar 

  12. Y. Nishikawa et al., “Deposition of ZnO Thin Films by Laser Ablation,” J. Japan Inst. Metals, 57 (1993), pp. 1426–1432.

    CAS  Google Scholar 

  13. T. Tanabe et al., “Formation of LaNi5 by Reduction Diffusion Process with CaH2,” Mater. Trans. JIM, 35 (1994), pp. 516–521.

    Google Scholar 

  14. H. Umehara, T. Suzuki, and R. Hayashi, “Synthesis of Ti Aluminides from Ti/Al Laminated Films by Magnetron Sputtering,” J. Japan Inst. Metals, 58 (1994), pp. 1050–1054.

    CAS  Google Scholar 

  15. Y. Ogino et al., “Nitriding of Transition Metal Powders by Ball Milling in Nitrogen Gas,” Mater. Trans. JIM, 34 (1993), pp. 1212–1216.

    CAS  Google Scholar 

  16. V.A. Ravi, T.S. Srivatsan, and J.J. Moore, eds., Processing and Fabrication of Advanced Materials III (Warrendale, PA: TMS, 1993).

    Google Scholar 

  17. S. Sridhar, D. Sichen, and S. Seetharaman, “Investigation of the Kinetics of Reduction of Nickel Oxide and Nickel Aluminate by Hydrogen,” Z. Metallkd., 85 (1994), pp. 616–620.

    CAS  Google Scholar 

  18. S. Sridhar, D. Sichen, and S. Seetharaman, “Investigation of the Kinetics of Reduction of Nickel Tungstate by Hydrogen,” Metall. Mater. Trans. B, 25B (1994), pp. 391–396.

    CAS  Google Scholar 

  19. Y. Iguchi, K. Goto, and S. Hayashi, “Surface Segregation of Calcium Oxide in Wustite and Its Effects on the Reduction,” Metall. Mater. Trans. B, 25B (1994), pp. 405–414.

    CAS  Google Scholar 

  20. Y. Iguchi, Y.I. Ueda, and S. Hayashi, “Improvement in the Reducibility of Wustite Assisted by the Intensified Surface Segregation of Calcium Ions by the Double Addition of CaO and SiO2,” Metall. Mater. Trans. B, 25B (1994), pp. 741–748.

    CAS  Google Scholar 

  21. W.E. Frazier, T.H.T. Mickle, and B.A. Pregger, “Thermodynamic Assessment of Hydrogen Desulfurization of Nickel,” EPD Congress 1994, ed. G. Warren (Warrendale, PA: TMS, 1993), pp. 1049–1064.

    Google Scholar 

  22. J.J. Talja and H.Y. Sohn, “Oxidation and Ignition Characteristics of Nickel Concentrates,” in Ref. 21, pp. 739–752.

    Google Scholar 

  23. R.O. Suominen et al., “Morphology and Mineralogy of Copper Matte Particles Reacted in Simulated Flash Converting Conditions,” Scandinavian J. Metall., 23 (1994), pp. 30–36.

    CAS  Google Scholar 

  24. S. Prasad, B.D. Pandey, and S.K. Palit, “Direct Sulphation of Chalcopyrite with Steam and Oxygen,” Trans. Instn Min. Metall., 103 (1994), pp. C69–C75.

    CAS  Google Scholar 

  25. A.N. Hagni, R.D. Hagni, and P.R. Taylor, “Mineralogical and Textural Characterization of Lime Roasted Pyrite and Arsenopyrite for Gold Leaching,” Process Mineralogy XII: Applications to Environment, Precious Metals, Mineral Beneficiation, Pyrometallurgy, Coal and Refractories, ed. W. Petruk and A.R. Rule (Warrendale, PA: TMS, 1994), pp. 141–149.

    Google Scholar 

  26. U.O. Igiehon, B.S. Terry, and P. Grieveson, “Carbothermic Reduction of Complex Sulphides Containing Arsenic and Antimony Part 1: Carbothermic Reduction of Iron Arsenic Sulphides,” Trans. Instn Min. Metall., 103 (1994), pp. C41–C47.

    CAS  Google Scholar 

  27. U.O. Igiehon, B.S. Terry, and P. Grieveson, “Carbothermic Reduction of Complex Sulphides Containing Arsenic and Antimony Part 2: Carbothermic Reduction of Copper Arsenic Sulphides,” Trans. Instn Min. Metall., 103 (1994), pp. C48–C53.

    CAS  Google Scholar 

  28. U.O. Igiehon, B.S. Terry, and P. Grieveson, “Carbothermic Reduction of Complex Sulphides Containing Arsenic and Antimony Part 3: Carbothermic Reduction of Copper Antimony Sulphides,” Trans. Instn Min. Metall., 103 (1994), pp. C54–C61.

    CAS  Google Scholar 

  29. P. Suryaprakash Rao and P.M. Prasad, “Direct Synthesis of Molycarbide by Molybdenite Carbon Monoxide Reaction in the Presence of Lime,” Mater. Trans. JIM, 34 (1993), pp. 1229–1233.

    Google Scholar 

  30. G. Kwame Polley and H.H. Kellogg, “Distribution of Silver, Gold and Bismuth During Segregation of Roasted Copper Concentrate,” Can. Metall. Quart., 33 (1994), pp. 275–278.

    Google Scholar 

  31. I. Gaballah, E. Allain, and M. Djona, “Chlorination Kinetics of Refractory Metal Oxides,” Light Metals 1994, ed. U. Mannweiler (Warrendale, PA: TMS, 1994), pp. 1153–1161.

    Google Scholar 

  32. T. Nagasaka and R.J. Fruehan, “Kinetics of the Reaction of H2O Gas with Liquid Iron,” Metall Mater. Trans. B, 25B (1994), pp. 245–254.

    Google Scholar 

  33. D. Neuschütz, Y. Zhai, and A. Hauck, “Nitrogen Transfer into Plasma Heated Steel Melts as a Function of Arc Polarity,” Steel Research, 65(6) (1994), pp. 218–224.

    Google Scholar 

  34. S. Yuan et al., “Deoxidation of Molten Metals Using Short Circuited Fas Ion Conductors,” in Ref. 1, pp. 401–412.

    Google Scholar 

  35. D. Ma and W.K. Lu, “Kinetics in Multicomponent Metallic Ionic Systems,” Metall. Mater. Trans. B, 25B(1994), pp.579–588.

    Google Scholar 

  36. F. Patsiogiannis, U.B. Pal, and R.S. Bogan, “Kinetics Studies on the Desulfurization of Aluminum Killed Low Carbon Steel Using Synthetic Fluxes,” Can. Metall. Quart., 33 (1994), pp. 305–312.

    CAS  Google Scholar 

  37. S. Simukanga and R.J. Pomfret, “Consecutive Reversible First Order Two Stage Reaction Model for Reduction of Cr2O3,” Ironmaking Steelmaking, 21 (1994), pp. 124–130.

    CAS  Google Scholar 

  38. W. Pei and O. Wijk, “Mechanism of Reduction of Chromium Oxide Dissolved in the CaO-SiO2-MgO-Al2O3 Slag by Solid Carbon,” Scandinavian J. Metall, 22 (1993), pp. 30–37.

    CAS  Google Scholar 

  39. W. Pei and O. Wijk, “A Kinetic Study on Chormite Ore Smelting Reduction,” Scandinavian J. Metall., 22 (1993), pp. 38–44.

    CAS  Google Scholar 

  40. O. Demir and R.H. Eric, “Reduction of Chromite in Liquid Fe Cr C Si Alloys,” Metall. Mater. Trans. B, 25B (1994), pp. 549–560.

    CAS  Google Scholar 

  41. S. Wright, S. Jahanshahi, and W.J. Errington, “Reduction Kinetics of Slags Produced from Recycling of Lead Batteries,” Pyrometallurgy for Complex Materials & Wastes, ed. M. Nilmani, T. Lehner, and W.J. Rankin (Warrendale, PA: TMS, 1994), pp. 121–132.

    Google Scholar 

  42. W. Chen et al., “Investigation of Tungsten Concentrate Used for Alloying in Ladle Refining Process,” Steel Research, 65(3) (1994), pp. 85–89.

    CAS  Google Scholar 

  43. J. Bygdén, T. DebRoy, and S. Seetharaman, “Dissolution of MgO in Stagnant CaO-FeO-SiO2 Slags,” Ironmaking Steel-making, 21 (1994), pp. 318–323.

    Google Scholar 

  44. M. Nagamori, K. Ito, and M. Tokuda, “The Grand Partition Function of Dilute Biregular Solutions,” Metall Mater. Trans. B, 25B (1994), pp. 703–712.

    CAS  Google Scholar 

  45. T. Tanaka et al., “Thermodynamic Relationship between the Enthalpy Interaction Parameter and the Entropy Interaction Parameter in Liquid Iron Nitrogen Based Ternary Alloys,” Z. Metallkd., 85 (1994), pp. 696–700.

    CAS  Google Scholar 

  46. B. Pei and T. Rosenqvist, “Thermodynamics of Oxide Sulphide Equilibria for Chromium, Vanadium and Titanium,” Scandinavian J. Metall., 20 (1991), pp. 331–340.

    CAS  Google Scholar 

  47. A. Dahlstedt et al., “Matched Thermochemical Diagram for Vacuum Decarburization of Ferroalloys,” Scandinavian J. Metall., 22 (1993), pp. 17–23.

    CAS  Google Scholar 

  48. B. Pei et al., “Thermodynamic Assessment of the Fe As System Using an Ionic Two Sublattice Model for the Liquid Phase,” Z. Metallkd., 85 (1994), pp. 171–177.

    CAS  Google Scholar 

  49. B. Pei et al., “Thermodynamic Assessment of the Cu As System Using an Ionic Two Sublattice Model for the Liquid Phase,” Z. Metallkd., 85 (1994), pp. 178–184.

    CAS  Google Scholar 

  50. B.S. Kim and Y.H. Lee, “A Fundamental Study on the Separation of Cobalt from Molten Cu Co Ni Alloys,” in Ref. 1, pp. 603–619.

    Google Scholar 

  51. N.G. Siviour and K. Ng, “Crystallization Studies of the β* (Mg2Pb) Phase and Its Phase Boundaries in the Pb-Mg-Bi System,” Metall. Mater. Trans. B, 25B (1994), pp. 255–264.

    CAS  Google Scholar 

  52. N.G. Siviour and K. Ng, “Mg-Pb Phase Diagram and Phase Transformations in the Intermetallic Compounds Mg2Pb and β′,” Metall Mater. Trans. B, 25B (1994), pp. 265–276.

    CAS  Google Scholar 

  53. K. Ng and N.K. Siviour, “A Process for Dibismuthizing Lead with Magnesium,” Metall. Mater. Trans. B, 25B (1994), pp. 379–384.

    CAS  Google Scholar 

  54. S.T. Kvamme, F. Nummedal, and T. Rosenqvist, “Liquid Immiscibility in the Cu-Ni-S Si System,” Scandinavian J. Metall., 22 (1993), pp. 295–299.

    CAS  Google Scholar 

  55. M.L. Sorokin et al., “Potential Diagrams of Ni-Fe-S-O-SiO2 System,” in Ref. 21, pp. 1013–1022.

    Google Scholar 

  56. M. Nagamori, “The Behavior of Sulfur in Industrial Pyrometallurgical Slag,” JOM, 46(6) (1994), pp. 65–71.

    Article  CAS  Google Scholar 

  57. A. Yazawa, “Thermodynamic Interpretation on Oxidic Dissolution of Metal in Slag,” in Ref. 41, pp. 61–72.

    Google Scholar 

  58. Y. Takeda, “The Effects of Basicity on Oxidic Dissolution of Copper in Slag,” in Ref. 1, pp. 453–466.

    Google Scholar 

  59. N. Sano, “Thermodynamics of MgO or CaO Saturated Slags for Steel Dephosphorization,” Scandinavian J. Metall., 22 (1993), pp. 139–144.

    CAS  Google Scholar 

  60. R. Ni et al., “Dephosphorization of Silico Manganese Alloys under Reducing Atmosphere with Metallic Calcium,” Steel Research, 65(1) (1994), pp. 15–20.

    CAS  Google Scholar 

  61. N. Shinozaki, “Dephosphorization and Desulfurization of Iron Melts by Fluxes Containing Manganese Oxide,” J. Japan Inst. Metals, 57 (1993), pp. 1397–1403.

    CAS  Google Scholar 

  62. L. Zhou and H.Y. Sohn, “Mathematical Modeling of Fluidized Bed Chlorination of Rutile,” in Ref. 31, pp. 1141–1152.

    Google Scholar 

  63. Y.B. Hahn et al., “Mathematical Modeling of the Prereduction Process of Iron Ore in a Circulating Fluidized Bed,” in Ref. 1, pp. 669–692.

    Google Scholar 

  64. Y. Yasuda and H.Y. Sohn, “Particle Dispersion Phenomena in a Turbulent Gas Jet of the Flash Smelting Process,” in Ref. 21, pp. 753–777.

    Google Scholar 

  65. Y.B. Hahn and H.Y. Sohn, “The Trajectories and Distribution of Particles in a Turbulent Axisymmetric Gas Jet Injected into the Rash Furnace Shaft,” Metall. Trans. B, 19B (1988), pp. 973–975.

    Google Scholar 

  66. Y.B. Hahn and H.Y. Sohn, “Mathematical Modeling of Sulfide Flash Smelting Process: Part I. Model Development and Verification with Laboratory and Pilot Plant Measurements for Chalcopyrite Concentrate Smelting,” Metall. Trans. B, 21B (1990), pp.975–958.

    Google Scholar 

  67. A. Jokilaakso et al., “Computer Simulation of Fluid Flow in an Outokumpu Type Flash Smelting Furnace,” in Ref. 1, pp. 841–858.

    Google Scholar 

  68. I.D. Sutalo et al., “Model Studies of Transient Row through a Flash Smelting Burner and Shaft,” in Ref. 1, pp. 823–839.

    Google Scholar 

  69. K.M. Iyer and H.Y. Sohn, “Physical and Mathematical Modeling of Pyrometallurgical Channel Reactors with Bottom Gas Injection: Residence Time Distribution Analysis and Ideal Reactor Network Model,” Metall. Mater. Trans. B, 25B (1994), pp. 207–220.

    CAS  Google Scholar 

  70. H.J. Richter, J.T. Laaspere, and J.M. Fitzpatrick, “Experimental and Numerical Modeling of Mixing and Settling in Continuous Metal Production,” in Ref. 1, pp. 859–878.

    Google Scholar 

  71. N.J. Themelis and B. Zhao, “Continuous Flow Reactors in Pyrometallurgy,” in Ref. 1, pp. 879–896.

    Google Scholar 

  72. L.R. Nelson, D.G.C. Robertson, and K.N. Swamy, “Thermodynamic and Kinetic Simulation of a Novel Counter Current Reaction Launder Process for the Production of Refined Low Carbon Ferromanganese,” in Ref. 21, pp. 713–737

    Google Scholar 

  73. D.G.C. Robertson, L.R. Nelson, and K.N. Swamy, “Kinetic Simulation of the Zinc Fuming of Lead Blast Furnace Slags in Center Fed, Hollow Graphite Electrode, DC Plasma Arc Furnaces,” in Ref. 1, pp. 283–306.

    Google Scholar 

  74. Y.F. Zhao and G.A. Irons, “Calcium Carbide Powder Injection into Hot Metal. Part 1. Heat Transfer to Particles,” Ironmaking Steelmaking, 21 (1994), pp. 303–308.

    CAS  Google Scholar 

  75. Y.F. Zhao and G.A. Irons, “Calcium Carbide Powder Injection into Hot Metal. Part 2. Simultaneous Desulphurisation and Deoxidation,” Ironmaking Steelmaking, 21 (1994), pp. 309–317.

    CAS  Google Scholar 

  76. D.Z. Lu, G.A. Irons, and W.K. Lu, “Kinetics and Mechanisms of Calcium Dissolution and Modification of Oxide and Sulphide Inclusions in Steel,” Ironmaking Steelmaking, 21 (1994), pp. 362–372.

    CAS  Google Scholar 

  77. M. Reifferscheid and W. Pluschkell, “Development of a Numerical Model Simulating the Desulphurisation of Liquid Steel,” Steel Research, 65 (1994), pp. 309–314.

    CAS  Google Scholar 

  78. Y. Guan and K.N. Han, “The Dissolution Behavior of Metals from Silver/Copper Alloys in Ammoniacal Solutions,” Minerals Metall Processing, 11(2) (1994), pp. 12–19.

    CAS  Google Scholar 

  79. O. Barbosa Filho and A.J. Monhemius, “Leaching of Gold in Thiocyanate Solutions Part 3: Rates and Mechanism of Gold Dissolution,” Trans. Instn. Min. Metall., 103 (1994), pp. C117–C125.

    CAS  Google Scholar 

  80. A.A. Chen and D.B. Dreisinger, “The Ferric Fluosilicate Leaching of Lead Concentrates: Part I. Kinetic Studies,” Metall. Mater. Trans. B, 25B (1994), pp. 473–480.

    CAS  Google Scholar 

  81. R. Kumar, “Leaching Characteristics of Disordered Birnessite and Goethite Doped with Ni, Co and Cu in Sorption Mode,” Mater. Trans. JIM, 35 (1994), pp. 27–34.

    CAS  Google Scholar 

  82. I. Girgin and F. Erkal, “Dissolution Characteristics of Scheelite in HC1-C2H5OH-H2O and HC1-C2H5OH Solutions,” Hydrometallurgy, 34 (1993), pp. 221–230.

    CAS  Google Scholar 

  83. Y. Konishi, M. Katoh, and S. Asai, “Leaching of Copper from Natural Covellite in Alkaline Na4EDTA Solutions,” Mater. Trans. JIM, 35 (1994), pp. 695–698.

    CAS  Google Scholar 

  84. J.H. Lee and G.P. Martins, “Codeposition Behavior of Mercury and Gold in Cyanide Electrolytes,” in Ref. 21, pp. 167–189.

    Google Scholar 

  85. J.F. Hevia and M.E. Wadsworth, “Hydrothermal Reduction of Copper Oxides,” in Ref. 21, pp. 93–108.

    Google Scholar 

  86. Y. Konishi, T. Kawamura, and S. Asai, “Preparation and Properties of Fine Hematite Powders by Hydrolysis of Iron Carboxylate Solutions,” Metall. Mater. Trans. B, 25B (1994), pp. 165–170.

    CAS  Google Scholar 

  87. R.D. Peterson and M.E. Wadsworth, “Solid, Solution Reactions in the Hydrothermal Enrichment of Chalcopyrite at Elevated Temperatures,” in Ref. 21, pp. 275–291.

    Google Scholar 

  88. X. Meng and K.N. Han, “Adsorption of Gold from Iodide Solution by Activated Carbon,” Minerals Metall. Processing, 11(2) (1994), pp. 31–36.

    CAS  Google Scholar 

  89. W. Yapu et al., “Adsorption Kinetics of Dicyanoaurate and Dicyanoargentate Ions in Activated Carbon,” Metall. Mater. Trans. B, 25B (1994), pp. 185–192.

    CAS  Google Scholar 

  90. C. Chen and T. Zhu, “The Kinetics of Cobalt(II) Extraction with EHEHPA in Heptane from Acetate System Using an Improved Lewis Cell Technique,” Solvent Extraction Ion Exchange, 12 (1994), pp. 1013–1032.

    CAS  Google Scholar 

  91. L. Yang, T. Michel, and W. Nitsch, “Effect of Auxiliary Complexing Agents on the Kinetics of Solvent Extraction of Metal Ions,” Solvent Extraction Ion Exchange, 11 (1993), pp. 119–141.

    CAS  Google Scholar 

  92. H.Y. Lee, S.G. Kim, and J.K. Oh, “Development of Kinetic Equations for the Extraction of Copper by LIX65N Based on Interfacial Reaction Mechanism,” Hydrometallurgy, 34 (1994), pp. 293–305.

    CAS  Google Scholar 

  93. K. Prochaskaet al., “Interfacial Activity and Rate of Copper Extraction with Chelate Extractants Having Two Hydroxyoxime Moieties,” Solvent Extraction Ion Exchange, 12 (1994), pp. 87–97.

    CAS  Google Scholar 

  94. R. Cierpiszewski, A. Olszanowski, and J. Szymanowski, “Effect of Hydroxyoxime Hydrophobicity upon Rate of Copper Extraction with 2-Hydroxy-5-alkylbenzophenone Oximes in the Presence of α-Acyloin Oximes,” Solvent Extraction Ion Exchange, 12 (1994), pp. 571–583.

    CAS  Google Scholar 

  95. T. Kopczyski et al., “Structure and Properties of Alkanal Oximes as Copper Extractants,” Solvent Extraction Ion Exchange, 12 (1994), pp. 701–725.

    Google Scholar 

  96. J.A. Golding et al., “Extraction of Nickel from Aqueous Sulfate Solution into Bis(2,2,4 trimethylpentyl) Phosphinic Acid, Cyanex 272™—Equilibrium and Kinetic Studies,” Solvent Extraction Ion Exchange, 11 (1993), pp. 91–118.

    CAS  Google Scholar 

  97. K. Inoue et al., “Solvent Extraction of Platinum(IV) with a Novel Sulfur Containing Extracting Reagent,” Solvent Extraction Ion Exchange, 12 (1994), pp. 55–67.

    Article  CAS  Google Scholar 

  98. M. Goto et al., “Effect of Synthesized Surfactants in the Separation of Rare Earth Metals by Liquid Surfactant Membranes,” Ind. Eng. Chem. Res., 32 (1993), pp. 1681–1685.

    CAS  Google Scholar 

  99. R. Chiarizia, E.P. Horwitz, and S.D. Alexandratos, “Uptake of Metal Ions by a New Chelating Ion Exchange Resin. Part 4: Kinetics,” Solvent Extraction Ion Exchange, 12 (1994), pp. 211–237.

    CAS  Google Scholar 

  100. O. Barbosa Filho and A.J. Monhemius, “Leaching of Gold in Thiocyanate Solutions Part 1. Chemistry and Thermodynamics,” Trans. Instn. Min. Metall., 103 (1994), pp. C105–C110.

    CAS  Google Scholar 

  101. O. Barbosa Filho and A.J. Monhemius, “Leaching of Gold in Thiocyanate Solutions Part 2: Redox Processes in Iron(III) Thiocyanate Solutions,” Trans. Instn. Min. Metall., 103 (1994), pp.C111–C116.

    CAS  Google Scholar 

  102. G. Van Weert and D.J. Droppert, “Aqueous Processing of Arsenic Trioxide to Crystalline Scorodite,” JOM, 46(6) (1994), pp. 36–38.

    Article  CAS  Google Scholar 

  103. N.V. Deorkar and L.L. Tavlarides, “Removal of Copper and Nickel from Dilute Aqueous Streams Using Inorganic Chemically Active Adsorbents,” Metals and Materials Waste Reduction, Recovery and Remediation, ed. K.C. Liddell, R.G. Bautista, and R.J. Orth (Warrendale, PA: TMS, 1994), pp. 3–9.

    Google Scholar 

  104. M.S. Lee, E.C. Lee, and H.Y. Sohn, “A New Thermodynamic Model of Solvent Extraction Equilibria Based on the K Value Method,” in Ref. 1, pp. 931–953.

    Google Scholar 

  105. O. Heitzsch et al., “Liquid Liquid Extraction of Ag(I), Hg(II), Au(III) and Pd(II) by Some Olithogia Macrocyclic Ligands Incorporating Aromatic and Heteroaromatic Subunits,” Solvent Extraction Ion Exchange, 12 (1994), pp. 475–496.

    CAS  Google Scholar 

  106. H. Ishii, S. Satoh, and T. Odashima, “Solvent Extraction of Aluminium, Gallium and Indium with 4-acyl-3-phenyl-5-isoxazolones,” Solvent Extraction Ion Exchange, 11 (1993), pp. 423–436.

    Google Scholar 

  107. S.A. E-l Reefy, N.A. Dessouky, and H.F. Aly, “Extraction of Am(III) and Eu(III) from Nitrate Medium by Thenoyltrifluoroacetone Mixed with Some Soft Donor Ligands,” Solvent Extraction Ion Exchange, 11 (1993), pp. 19–32.

    CAS  Google Scholar 

  108. V.F. Travkin, A.N. Kravchenko, and G.P. Miroevsky, “Solvent Extraction of Arsenic and Antimony from Sulfate Solutions Using Mixtures of Phosphororganic Extractants,” Soviet J. Non Ferrous Metals, 34(4) (1993), pp. 15–19.

    Google Scholar 

  109. M. Petrich et al., “Extraction of Gold(III) from Hydrochloric Acid Solutions by n-(thiocarbamoyl) Benzamidines,” Solvent Extraction Ion Exchange, 11 (1993), pp. 51–66.

    Article  CAS  Google Scholar 

  110. J.S. Preston, “The Selective Solvent Extraction of Cadmium by Mixtures of Carboxylic Acids and Trialkylphosphine Sulphides. Part 1. The Origin and Scope of the Synergistic Effect,” Hydrometallurgy, 36 (1994), pp. 61–78.

    CAS  Google Scholar 

  111. J.S. Preston and A.C. du Preez, “The Solvent Extraction of Cadmium and Zinc by Mixtures of Carboxylic Acids and Alkanethiols,” Solvent Extraction Ion Exchange, 12 (1994), pp. 667–685.

    CAS  Google Scholar 

  112. P. Vanura, V. Jedináková Krizová, and I. Juklíková, “Extraction of Ce(III) and Eu(III) by Nitrobenzene Solutions of Bis-1,2-dicarbollylcobaltate in the Presence of 18-Crown-6,” Solvent Extraction Ion Exchange, 12 (1994), pp. 439–458.

    CAS  Google Scholar 

  113. N.B. Devi, K.C. Nathsarma, and V. Chakravortty, “Sodium Salts of D2EHPA, PC-881 and Cyanex-272 and Their Mixtures as Extractants for Cobalt(II),” Hydrometallurgy, 34 (1994), pp. 331–342.

    CAS  Google Scholar 

  114. G. Cote et al., “Modelling of Extraction Equilibrium for Copper(II) Extraction by Pyridinecarboxylic Acid Esters from Concentrated Chloride Solutions at Constant Water Activity and Constant Total Concentration of Ionic or Molecular Species Dissolved in the Aqueous Solution,” Solvent Extraction Ion Exchange, 12 (1994), pp. 99–120.

    CAS  Google Scholar 

  115. A. Borowiak Resterna, “Extraction of Copper from Acid Chloride Solutions by n Alkyl-and n,n-Dialkyl-3-Pyridinecarboxamides,” Solvent Extraction Ion Exchange, 12(1994), pp. 557–569.

    CAS  Google Scholar 

  116. E.H. Rifi et al., “Extraction of Copper, Cadmium and Related Metals with Poly(Sodium Acrylate Acrylic Acid) Hydrogels,” Solvent Extraction Ion Exchange, 12 (1994), pp. 1103–1119.

    CAS  Google Scholar 

  117. G.P. Demopoulos, I.O. Mihaylov, and G. Pouskouleli, “Synergistic Extraction of Iron(III) from Sulphuric Acid Solutions with Mixed Kelex 100 Alkyl Phosphorus Acid Extractants,” Solvent Extraction Ion Exchange, 11 (1993), pp. 67–89.

    Article  CAS  Google Scholar 

  118. S.K. Yadav, O.V. Singh, and S.N. Tandon, “Extraction and Separation of Some 3D Transition Elements Using Cyanex 925: Application to Zinc Ores,” Hydrometallurgy, 36 (1994), pp. 53–59.

    CAS  Google Scholar 

  119. M.O.C. Ogwuegbu and N.C. Oforka, “Solvent Extraction Separation Studies of Iron (III), Cobalt (II), Nickel (II) and Copper (II) from Aqueous Solution with 1-Phenyl-3-Methyl-4-(p-Nitrobenzoyl)-5-Pyrazolone,” Hydrometallurgy, 34 (1994), pp. 359–367.

    CAS  Google Scholar 

  120. R. Jörger and Z. Kolarik, “Extraction of Gallium(III) and Accompanying Elements with Tribultyl Phosphate from Chloride Media,” Solvent Extraction Ion Exchange, 11 (1993), pp. 33–49.

    Google Scholar 

  121. M. Majdan and Z. Kolarik, “Synergistic Extraction of Lanthanides(III) by Trioctylmethylammonium Nitrate and Tributyl Phosphate,” Solvent Extraction Ion Exchange, 11 (1993), pp. 331–348.

    CAS  Google Scholar 

  122. J.S. Preston, “Solvent Extraction of the Trivalent Lanthanidesand Yttrium by Some 2-Bromoalkanoic Acids,” Solvent Extraction Ion Exchange, 12 (1994), pp. 29–54.

    CAS  Google Scholar 

  123. P.B. Santhi et al., “Synergistic Solvent Extraction of Trivalent Lanthanides and Actinide by Mixtures of 1-Phenyl-3-Methyl-4-Benzoyl-Pyrazalone-5-and Neutral Oxo-Donors,” Solvent Extraction Ion Exchange, 12 (1994), pp. 633–650.

    CAS  Google Scholar 

  124. A. Hrdlika, “Ion Pair Extraction of Molybdenum(VI) in the Presence of 3-Hydroxy-2-Naphthoic Acid,” Solvent Extraction Ion Exchange, 12 (1994), pp. 585–597.

    Google Scholar 

  125. Q. Tian and M.A. Hughes, “Synthesis and Characterisation of Diamide Extractants for the Extraction of Neodymium,” Hydrometallurgy, 36 (1994), pp. 79–94.

    CAS  Google Scholar 

  126. N. Jarvis, L. Krüger, and J.G.H. du Preez, “Derivatives of Imodopyrophosphoric Acids as Extractants. Part 6. Determination of Metal Ion Extraction Mechanism of n, n-n′, n′-Octylbutylimido-Diphosphotetramide by Potentiometry,” Solvent Extraction Ion Exchange, 12 (1994), pp. 599–614.

    CAS  Google Scholar 

  127. T. Kakoi, M. Goto, and F. Nakashio, “Solvent Extraction of Palladium with bis(2,4,4,-trimethylpentyl)dithiophosphinic Acid and Bis(2,4,4,-trimethylpentyl)monothiophosphinic Acid,” Solvent Extraction Ion Exchange, 12 (1994), pp. 541–555.

    CAS  Google Scholar 

  128. B. Côté and G.P. Demopoulos, “New 8-Hydroxyquinoline Derivative Extractants for Platinum Group Metals Separation. Part 2: Pd(II) Extraction Equilibria and Stripping,” Solvent Extraction Ion Exchange, 12 (1994), pp. 393–421.

    Google Scholar 

  129. D.A. Chowdhury, C.S. Mendoza, and S. Kamata, “New Xanthic Acid Derivatives as Potential Reagents in the Solvent Extraction of Precious Metal Ions: Extraction of Palladium(II) with 1,3 Bis(0-Butylxanthato)Propane,” Solvent Extraction Ion Exchange, 12 (1994), pp. 1051–1071.

    CAS  Google Scholar 

  130. B. Côté and G.P. Demopoulos, “New 8-Hydroxyquinoline Derivative Extractants for Platinum Group Metals Separation. Part 3: Pt(IV) Extraction Equilibria and Stripping,” Solvent Extraction Ion Exchange, 12 (1994), pp. 517–540.

    Google Scholar 

  131. J.N. Mathur et al., “Separation and Recovery of Plutonium from Oxalate Supernatant Using CMPO,” Solvent Extraction Ion Exchange, 12 (1994), pp. 745–763.

    CAS  Google Scholar 

  132. F. Kubota, M. Goto, and F. Nakashio, “Extraction of Rare Earth Metals with 2-Ethylhexyl Phosphonic Acid Mono-2-Ethylhexyl Ester in the Presence of Diethylenetriaminepentaacetic Acid in Aqueous Phase,” Solvent Extraction Ion Exchange, 11 (1993), pp. 437–453.

    CAS  Google Scholar 

  133. E. Benguerel et al., “An Investigation on the Extraction of Rhodium from Aqueous Chloride Solutions with 7-Substituted 8-Hydroxyquinolines,” Solvent Extraction Ion Exchange, 12 (1994), pp. 497–516.

    CAS  Google Scholar 

  134. C. Wang and D. Li, “Extraction Mechanism of Sc(III) and Separation from Th(IV), Fe(III) and Lu(III) with Bis(2,4,4-Trimethylpentyl)Phosphinic Acid in n-Hexane from Sulphuric Acid Solutions,” Solvent Extraction Ion Exchange, 12 (1994), pp. 615–631.

    CAS  Google Scholar 

  135. K. Nishizawa et al., “Separation of Strontium and Barium Isotopes Using a Crown Ether. Different Behaviors of Odd Mass and Even Mass Isotopes,” Solvent Extraction Ion Exchange, 12 (1994), pp. 1073–1084.

    CAS  Google Scholar 

  136. M.R. Chowdhury and S.K. Sanyal, “Diluent Effect on Extraction of Tellurium (IV) and Selenium (IV) by Tri-n Butyl Phosphate,” Hydrometallurgy, 34 (1994), pp. 319–330.

    CAS  Google Scholar 

  137. V. Kislik and A. Eyal, “Extraction of Titanium(IV) by Mixtures of Mono-and Di-(2-Ethylhexyl) Phosphoric Acid Esters,” Solvent Extraction Ion Exchange, 11 (1993), pp. 285–310.

    CAS  Google Scholar 

  138. D.A. White and Fathurrachman, “Extraction of Uranium (VI) and Uranium (IV) from Hydrochloric Acid Using Tri-n Octylamine in a Benzene Diluent,” Hydrometallurgy, 36 (1994), pp. 161–168.

    Article  CAS  Google Scholar 

  139. L. Nigond, C. Musikas, and C. Cuillerdier, “Extraction by n, n, n′, n′-Tetraalkyl 2-Alkyl Propane 1,3-Diamides. II. U(VI) and Pu(IV),” Solvent Extraction Ion Exchange, 12 (1994), pp. 297–323.

    CAS  Google Scholar 

  140. A. Suresh, T.G. Srinivasan, and P.R. Vasudeva Rao, “Extraction of U(VI), Pu(IV) and Th(IV) by Some Trialkyl Phosphates,” Solvent Extraction Ion Exchange, 12 (1994), pp. 727–744.

    CAS  Google Scholar 

  141. J.S. Preston, “The Influence of Extractant Structure on the Solvent Extraction of Zinc(II) and Cadmium(II) by Carboxylic Acids,” Solvent Extraction Ion Exchange, 12 (1994), pp. 1–27.

    Article  CAS  Google Scholar 

  142. B.A. Diantouba et al., “Extraction of Zinc and Cadmium with Some Bis(5′-Hydroxy-Pyrazol-4′-Oyl) Alkanes and Tri-n-Octylphosphine Oxide in Chloroform,” Solvent Extraction Ion Exchange, 12 (1994), pp. 325–347.

    CAS  Google Scholar 

  143. E.P. Horwitz, R. Chiarizia, and S.D. Alexandratos, “Uptake of Metal Ions by a New Chelating Ion Exchange Resin. Part 5: The Effect of Solution Matrix on Actinides,” Solvent Extraction Ion Exchange, 12 (1994), pp. 831–845.

    CAS  Google Scholar 

  144. R. Chiarizia and E.P. Horwitz, “Uptake of Metal Ions by a New Chelating Ion Exchange Resin. Part 6: Calculations on the Effect of Complexing Anions on Actinides,” Solvent Extraction Ion Exchange, 12 (1994), pp. 847–871.

    CAS  Google Scholar 

  145. K.N. Sabharwal, P.R. Vasudeva Rao, and M. Srinivasan, “Extraction of Actinides by Bifunctional Phosphinic Acid Resin,” Solvent Extraction Ion Exchange, 12 (1994), pp. 1085–1101.

    CAS  Google Scholar 

  146. I. Tyc and B.R. Green, “Phenol Formaldehyde Based Weak Base Resins for the Recovery of Gold,” Solvent Extraction Ion Exchange, 12 (1994), pp. 817–830.

    CAS  Google Scholar 

  147. T. Kekesi and M. Isshiki, “Anion Exchange Behavior of Copper and Some Metallic Impurities in HC1 Solutions,” Mater. Trans. JIM, 35 (1994), pp. 406–413.

    CAS  Google Scholar 

  148. S.A. Suchorebraya et al., “On the Studies of Molybdenum(VI) Sorption on Titanium Phosphate's Ion Exchangers,” Solvent Extraction Ion Exchange, 12 (1994), pp. 173–192.

    CAS  Google Scholar 

  149. M. Davis et al., “Using Crystalline Titanates to Remove Heavy Metals from Wastewater with Ion Exchange,” in Ref. 103, pp. 11–17.

    Google Scholar 

  150. Z. Hubicki, H. Hubicka, and M. Olszak, “Investigations into the Separation of Nitrate Complexes of Yttrium (III) from Neodymium (III) on Anion Exchangers of Different Cross Linking in the System CH3OH-H2O-HNO3,” Hydrometallurgy, 34 (1994), pp. 307–318.

    CAS  Google Scholar 

  151. J.L. Cortina et al., “Solvent Impregnated Resins Containing Di(2-Ethyl-Hexyl)Phosphoric Acid. II. Study of the Distribution Equilibria of Zn(II), Cu(II) and Cd(II),” Solvent Extraction Ion Exchange, 12 (1994), pp. 371–391.

    CAS  Google Scholar 

  152. K.C. Liddell and R.G. Bautista, “Simulation of In-Situ Uraninite Leaching. Part I: A Partial Equilibrium Model of the NH4HCO3-(NH4)2CO3-H2O2 Leaching System,” Metall. Mater. Trans. B, 25B (1994), pp. 171–184.

    CAS  Google Scholar 

  153. S. Kumar and R.G. Bautista, “A Study of Growth Kinetics and Mechanism of Alumina Precipitation by Bayers Process,” in Ref. 31, pp. 47–51.

    Google Scholar 

  154. W.J. Crama and J. Visser, “Modelling and Computer Simulation of Alumina Trihydrate Precipitation,” in Ref. 31, pp. 73–82.

    Google Scholar 

  155. K. Larson, B. Raghuraman, and J. Wiencek, “Mass Transfer Model of Mercury Removal from Water via Microemulsion Liquid Membranes,” Ind. Eng. Chem. Res., 33 (1994), pp. 1612–1619.

    CAS  Google Scholar 

  156. T. Yamada et al., “Electrodeposition from Molten Salt under Direct Magnetic Field Application,” J. Japan Inst. Metals, 58 (1994), pp. 1044–1049.

    CAS  Google Scholar 

  157. R. Shekhar and J.W. Evans, “Physical Modeling Studies of Electrolyte Flow Due to Gas Evolution and Some Aspects of Bubble Behavior in Advanced Hall Cells: Part I. Flow in Cells with a Flat Anode,” Metall. Mater. Trans. B, 25B (1994), pp. 333–340.

    CAS  Google Scholar 

  158. R. Shekhar and J.W. Evans, “Physical Modeling Studies of Electrolyte Row Due to Gas Evolution and Some Aspects of Bubble Behavior in Advanced Hall Cells: Part II. Row and Interpolar Resistance in Cells with a Grooved Anode,” Metall. Mater. Trans. B, 25B (1994), pp. 341–350.

    CAS  Google Scholar 

  159. J. Antille, M. Flueck, and M.V. Romerio, “Steady Velocity Field in Aluminium Reduction Cells Derived from Measurements of the Anodic Current Fluctuations,” in Ref. 31, pp. 305–312.

    Google Scholar 

  160. R. Vidal, P. Duby, and A.C. West, “A Mathematical Model of Ionic Transport in a Porous Diaphragm of a Chrome Alum Cell,” Metall Mater. Trans. B, 25B (1994), pp. 351–358.

    CAS  Google Scholar 

  161. U. Fritsching, H. Zhang, and K. Bauckhage, “Numerical Simulation of Temperature Distribution and Solidification Behaviour during Spray Forming,” Steel Research, 65 (1994), pp. 273–278.

    CAS  Google Scholar 

  162. P.A. Davidson and S.C. Flood, “Natural Convection in an Aluminum Ingot: A Mathematical Model,” Metall. Mater. Trans. B, 25B (1994), pp. 293–305.

    CAS  Google Scholar 

  163. S. Kumar and S.C. Bhaduri, “Three Dimensional Finite Element Modeling of Gas Metal Arc Welding,” Metall. Mater. Trans. B, 25B (1994), pp. 435–442.

    Google Scholar 

  164. A. Zaidi and H.Y. Sohn, “Measurement of Drop Size Distribution in Liquid Liquid Emulsions Formed by High Velocity Bottom Gas Injection,” In Ref. 1, pp. 645–668.

    Google Scholar 

  165. D.E. Langberg and M. Nilmani, “The Injection of Solids Using a Reactive Carrier Gas,” Metall. Mater. Trans. B, 25B (1994), pp. 653–660.

    CAS  Google Scholar 

  166. S.C. Koria, “Principles and Applications of Gas Injection in Steelmaking Practice,” Scandinavian J. Metall., 22 (1993), pp. 271–279.

    CAS  Google Scholar 

  167. M.A.S.C. Castello Branco and K. Schwerdtfeger, “Large Scale Measurements of the Physical Characteristics of Round Vertical Bubble Plumes in Liquids,” Metall. Mater. Trans. B, 25B (1994), pp. 359–372.

    CAS  Google Scholar 

  168. Y. Xie and F. Oeters, “Measurements of Bubble Plume Behaviour and Flow Velocity in Gas Stirred Liquid Wood's Metal with an Eccentric Nozzle Position,” Steel Research, 65 (1994), pp. 315–319.

    CAS  Google Scholar 

  169. K.D. Peaslee and D.G.C. Robertson, “Fluid Dynamics of Inclined Jetting on a Slag/Metal Bath,” in Ref. 21, pp. 1129–1145.

    Google Scholar 

  170. F. Qian, R. Mutharasan, and B. Farouk, “Studies of Interface Deformations in a Liquid Bath Due to Direct Impinging Gas Jet,” in Ref. 21, pp. 1147–1162.

    Google Scholar 

  171. T.A. Utigard and M. Zamalloa, “Foam Behaviour in Liquid FeO-CaO-SiO2 Slags,” Scandinavian J. Metall., 22 (1993), pp. 83–90.

    CAS  Google Scholar 

  172. J. Ren, M. Westholt, and K. Koch, “The Influence of MgO, K2O, Na2O and Gas Pressure on Slag Foaming Behaviour under Reducing Conditions,” Steel Research, 65 (1994), pp. 213–218.

    CAS  Google Scholar 

  173. T.A. Utigard, A. Warczok, and P. Desclaux, “The Measurement of the Heat Transfer Coefficient between High Temperature Liquids and Solid Surfaces,” Metall Mater. Trans. B, 25B (1994), pp. 43–52.

    CAS  Google Scholar 

  174. M. Kucharski, S.W. Ip, and J.M. Toguri, “The Surface Tension and Density of Cu2S, FeS, Ni3Ss and Their Mixtures,” Can. Metall. Quart., 33 (1994), pp. 197–203.

    CAS  Google Scholar 

  175. T.A. Utigard, “Density of Copper/Nickel Sulphide Smelting and Converting Slags,” Scandinavian J. Metall., 23 (1994), pp. 37–41.

    CAS  Google Scholar 

  176. T. Utigard, “An Analysis of Slag Stratification in Nickel Laterite Smelting Furnaces Due to Composition and Temperature Gradients,” Metall. Mater. Trans. B, 25B (1994), pp. 491–496.

    CAS  Google Scholar 

  177. N. Ikemiya et al., “Surface Tensions and Densities of Melts in TiO2-BaO and TiO2-Na2O Systems,” J. Japan Inst. Metals, 57 (1993), pp. 527–532.

    CAS  Google Scholar 

  178. M. Susa et al., “Thermal Properties of Slag Films Taken from Continuous Casting Mould,” Ironmaking Steelmaking, 21 (1994), pp. 279–286.

    CAS  Google Scholar 

  179. M. Imamura and J.M. Toguri, “Physicochemical Properties of Nickel Electrolytes,” Metall Mat er. Trans. B, 25B (1994), pp. 837–644.

    Google Scholar 

  180. I. Jimbo, A. Sharan, and A.W. Cramb, “The Surface and Interfacial Tensions of Steel Alloys Containing Nickel or Carbon and Sulphur,” Iron Steelmaker, 21(6) (1994), pp. 48–55

    Google Scholar 

  181. T. Tanaka and T. Iida, “Application of a Thermodynamic Database to the Calculation of Surface Tension for Iron Base Liquid Alloys,” Steel Research, 65 (1994), pp. 21–28.

    CAS  Google Scholar 

  182. S. Hara et al., “Surface Tension of Liquid Carbon Saturated Fe Ni Alloys and Their Wettability to Solid Graphite,” J. Japan Inst. Metals, 58 (1994), pp. 330–336.

    CAS  Google Scholar 

  183. A. Yoshida, “Critical Phenomenon Analysis of Surface Tension of Liquid Metals,” J. Japan Inst. Metals, 58 (1994), pp. 1161–1168.

    CAS  Google Scholar 

  184. J. Hives et al., “Electrical Conductivity of Molten Cryolite Based Mixtures Obtained with a Tube Type Cell Made of Pyrolytic Boron Nitride,” in Ref. 31, pp. 187–194.

    Google Scholar 

  185. L. Wang, A.T. Tabereaux, and N.E. Richards, “The Electrical Conductivity of Cryolitic Melts Containing Aluminum Carbide,” in Ref. 31, pp. 177–185.

    Google Scholar 

  186. A.A. Hejja, R.H. Eric, and D.D. Howat, “Electrical Conductivity, Viscosity and Liquidus Temperature of Slags in Electric Smelting of Copper Nickel Concentrates,” in Ref. 21, pp. 621–640.

    Google Scholar 

  187. A.A. Akberdin et al., “Electric Conductivity of Melts of theCaO-SiO2-Al2O3-B2-O3System,” Russ. Metall., No.5 (1993), pp. 52–55.

    Google Scholar 

  188. D. Sichen, J. Bygdén, and S. Seetharaman, “A Model for Estimation of Viscosities of Complex Metallic and Ionic Melts,” Metall. Mater. Trans. B, 25B (1994), pp. 519–526.

    CAS  Google Scholar 

  189. S. Seetharaman and D. Sichen, “Estimation of the Viscosities of Binary Metallic Melts Using Gibbs Energies of Mixing,” Metall. Mater. Trans. B, 25B (1994), pp. 589–596.

    Google Scholar 

  190. S. Seetharaman and D. Sichen, “Estimation of Viscosities of Multi-Component Melts at High Temperatures,” in Ref. 21, pp. 1171–1189.

    Google Scholar 

  191. F. Herwig and W. Hoyer, “Viscosity Investigations on Liquid Alloys of the Monotectic System Al-In,” Z. Metallkd., 85 (1994), pp. 388–390.

    CAS  Google Scholar 

  192. M. Kawakami et al., “Diffusivity of Aluminum in Molten Iron,” in Ref. 1, pp. 779–790.

    Google Scholar 

  193. K. Yamaguchi et al., “Measurements of High Temperature Heat Content of the II–VI and IV–VI (II: Zn, Cd IV: SN, PB VI: Se, Te) Compounds,” Mater. Trans. JIM, 35 (1994), pp. 118–124.

    CAS  Google Scholar 

  194. M.S. Lee, B.S. Terry, and P. Grieveson, “Decomposition Pressure of Potassium and Sodium Fluoroborates and Fluorotitanates,” Trans. Instn Min. Metall., 103 (1994), pp. C26–C32.

    CAS  Google Scholar 

  195. G.M. Kale and D.J. Fray, “Oxygen Potentials in Ni + NiO and Ni + Cr2O3 + NiCr2O4 Systems,” Metall. Mater. Trans. B, 25B (1994), pp. 373–378.

    CAS  Google Scholar 

  196. T. Narushima et al., “Oxygen Solubility in Liquid Silicon,” Mater. Trans. JIM, 35 (1994), pp. 522–528.

    CAS  Google Scholar 

  197. S.W. Tu and D. Janke, “On the Oxygen Solubility in Molten Silicon,” Z. Metallkd., 85 (1994), pp. 701–704.

    CAS  Google Scholar 

  198. H. Li and W.J. Rankin, “Thermodynamics and Phase Relations of the Fe-O-S-SiO2(sat) System at 1200°C and the Effect of Copper,” Metall. Mater. Trans. B, 25B (1994), pp. 79–90.

    CAS  Google Scholar 

  199. K. Frisk and C. Qiu, “A Thermodynamic Evaluation of the Solubility of N in Solid and Liquid Cr-Fe-Mn Alloys,” Z. Metallkd., 85 (1994), pp. 60–69.

    CAS  Google Scholar 

  200. C. Qiu, “Thermodynamic Analysis and Evaluation of the Nitrogen Solubility in Liquid Nb and Fe Nb Alloys,” Z. Metallkd., 85 (1994), pp. 222–227.

    CAS  Google Scholar 

  201. C. Qiu, “Prediction of the Nitrogen Solubility in Liquid Fe-Cr-Mn Alloys,” Scandinavian J. Metall, 22 (1993), pp. 232–236.

    Google Scholar 

  202. W. Luo and M.E. Schlesinger, “Thermodynamics of the Iron Carbon Zinc System,” Metall. Mater. Trans. B, 25B (1994), pp. 569–578.

    CAS  Google Scholar 

  203. R.G. Reddy and S.G. Kumar, “Solubility and Thermodynamics Properties of Y2O3 in LiF-YF3 Melts,” Metall. Mater. Trans. B, 25B (1994), pp. 91–96.

    CAS  Google Scholar 

  204. H. Todoroki and H. Suito, “Cosolubility of MgO and TiO2 in Haematite,” Scandinavian J. Metall., 22 (1993), pp. 227–231.

    CAS  Google Scholar 

  205. B. Pei, “Assessment of Arsenic Activity in Molten Copper,” Scandinavian J. Metall., 22 (1993), pp. 24–29.

    CAS  Google Scholar 

  206. F. Tsukihashi et al., “Activity Coefficient of Antimony and Arsenic in Molten Iron and Carbon Saturated Iron,” Steel Research, 65 (1994), pp. 53–57.

    CAS  Google Scholar 

  207. N.A. Gokcen, “Comments on the Activity of Carbon in Liquid Iron,” Steel Research, 65 (1994), pp. 125–127.

    CAS  Google Scholar 

  208. K. Yamanaka and M. Iwase, “Activities of Phosphorus in Cu-Ni Alloys at 1573 K,” Scandinavian J. Metall., 22 (1993), pp. 325–328.

    CAS  Google Scholar 

  209. A. Zajczkowski and J. Botor, “Thermodynamics of the Ga-Sb System Determined by Vapour Pressure Measurements,”Z. Metallkd., 85 (1994), pp. 472–478.

    Google Scholar 

  210. X. Xue and Y. Che, “Activity Interaction Coefficients of Si in Cu-Ti-Si Melts at 1550°C,” Z. Metallkd., 85 (1994), pp. 391–393.

    CAS  Google Scholar 

  211. K. Kameda et al., “Thermodynamic Properties of Liquid Te Pb Alloys by EMF Method,” J. Japan Inst. Metals, 57 (1993), pp. 774–780.

    CAS  Google Scholar 

  212. R.H. Eric and H. Ozok, “High Temperature Phase Relations and Theromdynamics in the Iron Lead Sulfur System,” Metall. Mater. Trans. B, 25B (1994), pp. 53–62.

    CAS  Google Scholar 

  213. N. Nowack, “CaO Activities and Structure and CaO-Al2O3 Melts,” Steel Research, 65 (1994), pp. 320–321.

    CAS  Google Scholar 

  214. P.T. Velu and R.G. Reddy, “Thermodynamic Properties of CeO2 in Fluoride Melts,” in Ref. 21, pp. 1163–1169.

    Google Scholar 

  215. Y. Takeda, “Miscibility Gap in the CaO-SiO2-Cu2O-Fe3O4 System under Copper Saturation and Distribution of Impurities,” Mater. Trans. JIM, 34 (1993), pp. 937–945.

    CAS  Google Scholar 

  216. T.K. Inouye et al., “A Thermodynamic Study of BaO + BaCl2 + Cr2O3 Fluxes Used for the Removal of Phosphorus from Chromium Containing Iron Melts,” Metall. Mater. Trans. B, 25B (1994), pp. 695–702.

    CAS  Google Scholar 

  217. M. Iwase, T. Ogura, and R. Tsujino, “Automatic FeO Activity Determinator for Slag Control,” Steel Research, 65 (1994), pp. 90–93.

    CAS  Google Scholar 

  218. S. Sun and S. Jahanshahi, “An Alternative Gibbs Duhem Method for the Calculation of Activities from the Redox Data for Iron Oxide in Ternary Oxide Systems,” Metall. Mater. Trans. B, 25B (1994), pp. 277–280.

    CAS  Google Scholar 

  219. H. Fukuyama et al., “Activities in NaO0.5-CO2-AsO2.5 Slag and Estimation of Distribution Ratio of Arsenic between the Slag and Molten Copper,” Metall. Rev. MMIJ, 10 (1993), pp. 72–86.

    CAS  Google Scholar 

  220. H. Fukuyama et al., “Thermodynamic Properties of NaO0.5-CO2-FeO1.5 Slag,” Mater. Trans. JIM, 35 (1994), pp. 603–610.

    CAS  Google Scholar 

  221. H. Fukyama, T. Fujisawa, and C. Yamauchi, “Activities in NaO0.5-CO2-SbOm Slag and Estimation of Distribution Ratio of Sb between the Slag and Molten Copper,” J. Japan Inst. Metals, 57 (1993), pp. 521–526.

    Google Scholar 

  222. T. Fujisawa et al., “Thermodynamics of NaO0.5-CO2-SnO2 Slag and Estimation of Distribution Ratio of Sn between the Slag and Molten Copper,” Mater. Trans. JIM, 35 (1994), pp. 414–422.

    Google Scholar 

  223. Z.C. Wanget al., “High Temperature Isopiestic Studies on the Ternary Slag PbO-SiO2-B2O3 at 1273 K,” Metall. Mater. Trans. B, 25B (1994), pp. 103–110.

    CAS  Google Scholar 

  224. C. Nianyi et al., “The Activity of Free NaOH in Sodium Aluminate Liquors,” Can. Metall. Quart., 33 (1994), pp. 163–164.

    Google Scholar 

  225. M. Kishi and H. Suito, “Thermodynamics of Oxygen, Nitrogen and Sulfur in Liquid Iron Equilibrated with CaO-TiOx and CaO-Al2O3-TiOx Melts,” Steel Research, 65 (1994), pp. 261–266.

    CAS  Google Scholar 

  226. S.W. Cho and H. Suito, “Thermodynamics of Oxygen and Nitrogen in Liquid Nickel Equilibrated with CaO-TiO and CaO-TiOx-Al2O3 Melts,” Metall. Mater. Trans. B, 25B (1994), pp. 5–14.

    CAS  Google Scholar 

  227. K. Tomioka and H. Suito, “Thermodynamics of the Removal of Nitrogen from Steel Using Titania-Based Fluxes,” Iron Steelmaker, 21(3) (1994), pp. 83–89.

    CAS  Google Scholar 

  228. R. Nilsson, D. Sichen, and S. Seetharaman, “Sulphide Capacity Measurements in the System CaO-MnO-SiO2,” in Ref. 21, pp. 1083–1095.

    Google Scholar 

  229. J. Gortais et al., “Equilibrium Distribution of Fe, Ni, Sb, and Sn between Liquid Cu and a CaO Rich Slag,” Metall. Mater. Trans. B, 25B (1994), pp. 645–652.

    CAS  Google Scholar 

  230. H. Fukuyama, T. Fujisawa, and C. Yamauchi, “Removal of Antimony and Arsenic from Molten Copper by Sodium Carbonate Slag Treatment,” in Ref. 1, pp. 443–452.

    Google Scholar 

  231. G.R. Alvear et al., “Thermodynamics Considerations for Elimination of Te and Se from Molten Copper by Using Na2CO3 Slag,” Mater. Trans. JIM, 35 (1994), pp. 508–515.

    CAS  Google Scholar 

  232. H. Fukuyama et al., “Interaction Parameter of Oxygen on Iron in Molten Copper and Distribution Ratio of Iron between NaO0.5-CO2FeO1.5 Slag and Molten Copper,” J. Japan Inst. Metals, 58 (1994), pp. 176–181.

    CAS  Google Scholar 

  233. S. Tandon, R.D. Agrawal, and M.L. Kapoor, “Distribution Equilibria of Tellurium between Liquid Copper and Na2O-B2O3-CaO Slags,” Scandinavian J. Metall., 22 (1993), pp. 237–240.

    CAS  Google Scholar 

  234. T. Kimura and H. Suito, “Calcium Deoxidation Equilibrium in Liquid Iron,” Metall. Mater. Trans. B, 25B (1994), pp. 33–42.

    CAS  Google Scholar 

  235. R. Inoue and H. Suito, “Thermodynamics of O, N, and S in Liquid Fe Equilibrated with CaO-Al2O3MgO Slags,” Metall Mater. Trans. B, 25B (1994), pp. 235–244.

    CAS  Google Scholar 

  236. R.L. Howard et al., “Vanadium Distribution in Melts Intermediate to Ferroalloy Production from Vanadiferous Slag,” Metall. Mater. Trans. B, 25B (1994), pp. 27–32.

    CAS  Google Scholar 

  237. Y. Yindong and J.O. Edström, “Phosphorus and Chromium Equilibrium Distributions between CaO-CaF2 Slags and Fe-Cr-C-P Melts,” Scandinavian J. Metall., 22 (1993), pp. 246–253.

    Google Scholar 

  238. T. Weiss and K. Schwerdtfeger, “Chemical Equilibria between Silicon and Slag Melts,” Metall. Mater. Trans. B, 25B (1994), pp. 497–504.

    CAS  Google Scholar 

  239. K. Lewin, D. Sichen, and S. Seetharaman, “Thermodynamics Study of the Cu Mn System,” Scandinavian J. Metall., 22 (1993), pp. 310–316.

    CAS  Google Scholar 

  240. D.J. Swenson, Sutopo, and Y.A. Chang, “Phase Equilibria in the System In Ir As at 600°C,” Z. Metallkd., 85 (1994), pp. 228–231.

    CAS  Google Scholar 

  241. R.E. Aune, S. Sridhar, and D. Sichen, “Thermodynamic Study of the Ni-W-O System in the Temperature Range 1073-1273 K,” in Ref. 21, pp. 815–829.

    Google Scholar 

  242. M. Iwase, Y. Kikuchi, and Y. Kawai, “Iso-Thermal Section of the Phase Diagram of System CaO + CaF2 + Cr2O3 and Its Relevance to Dephosphorization of Chromium Containing Steel Melts,” Scandinavian J. Metall., 22 (1993), pp. 45–48.

    CAS  Google Scholar 

  243. D. Sajuti et al., “Phase Diagrams of the Ga2O3-B2O3 and In2O3-B2O3 Binary System,” Mater. Trans. JIM, 34 (1993), pp. 1195–1199.

    CAS  Google Scholar 

  244. J.L. Sanchez and J.P. Hager, “Investigation of Volatile Hydroxide Formation as the Basis for the Enhanced Vapor Transport of Refractory Metal Oxides,” in Ref. 1, pp. 523–542.

    Google Scholar 

  245. K. Koyama, “Determination of Standard Gibbs Energies of Formation of CoMoO4 and Co2Mo3O8 by Electromotive Force Measurement,” Mater. Trans. JIM, 35 (1994), pp. 346–350.

    Google Scholar 

  246. S. Karlhuber, K.L. Komarek, and A. Mikula, “Thermodynamic Properties of Liquid Ag Sn Zn Alloys,” Z. Metallkd., 85 (1994), pp. 307–311.

    CAS  Google Scholar 

  247. T. Gnanasekaran and H. Ipser, “Thermodynamic Properties of Ternary Liquid Cu Mg Ni Alloys,” Metall. Mater. Trans. B, 25B (1994), pp. 63–72.

    CAS  Google Scholar 

  248. K. Yamaguchi et al., “Measurements of Heat of Formation of GaP, InP, GaAs, InAs, GaSb and InSb,” Mater. Trans. JIM, 35 (1994), pp. 596–602.

    CAS  Google Scholar 

  249. Q. Guo and O.J. Kleppa, “Standard Enthalpies of Formation of Some Praseodymium Alloys by High Temperature Direct Synthesis Calorimetry,” Metall Mater. Trans. B, 25B (1994), pp. 73–78.

    CAS  Google Scholar 

  250. S. Hassam, M. Gambino, and J.P. Bros, “Enthalpy of Formation of Liquid Ag Bi and Ag Bi Sn Alloys,” Z. Metallkd., 85 (1994), pp. 460–471.

    CAS  Google Scholar 

  251. M. Venkatraman et al., “The Excess Enthalpies of Liquid Cu Sn Te Alloys,” Z. Metallkd., 85 (1994), pp. 354–358.

    CAS  Google Scholar 

  252. M.S. Lee, B.S. Terry, and P. Grieveson, “Thermodynamic Properties of Alkali Metal Fluoride Aluminium Fluoride Melts,” Trans. Instn. Min. Metall, 103 (1994), pp. C33–C40.

    CAS  Google Scholar 

  253. J.R. Hugens, “An Apparatus for Monitoring Dissolved Hydrogen in Liquid Copper,” in Ref. 21, pp. 657–667.

    Google Scholar 

  254. S. Matsubara et al., “Determination of Aluminum Concentration in Molten Zinc by the E.M.F. Method Using CaF2 Solid Electrolyte,” J. Japan Inst. Metals, 58 (1994), pp. 929–935.

    CAS  Google Scholar 

  255. D.J. Fray and R.V. Kumar, “Electrochemical Determination of the Thermodynamics of the Ca-Pb System at 1173K Using Calcium Magnetoplumbite as the Electrolyte,” Scandinavian J. Metall., 22 (1993), pp. 266–270.

    CAS  Google Scholar 

  256. D. Gozzi and P. Granati, “Sulfur Determination in Carbon Saturated Iron by Solid State Electrochemical Sensor,” Metall Mater. Trans. B, 25B (1994), pp. 561–568.

    CAS  Google Scholar 

  257. M. Iguchi et al., “Development of a Kármán Vortex Probe for Measuring the Velocity of Molten Metal Row,” Mater. Trans. JIM, 35 (1994), pp. 716–721.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sohn, H.Y., Cho, W.D. Developments in physical chemistry and basic principles. JOM 47, 60–66 (1995). https://doi.org/10.1007/BF03221153

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03221153

Keywords

Navigation