Skip to main content
Log in

Reflecting on the new goals in nonferrous extractive research

  • 1990 Review of Extractive Metallurgy
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Various economic and political factors have induced dramatic changes in nonferrous extractive industries. Accordingly, the marketing of research proposals has forced researchers to focus on new goals, which include cost reduction, substitute materials, new processing technologies and environmental issues. From this perspective, it is especially difficult to justify research in thermodynamics and the kinetics of reactions. However, investigations into mathematical modeling as it is linked to process engineering are very active. Further, hydrometallurgy is moving from “metal farming” to high productivity; in pyrometallurgy, new industrial processes have appeared which possess improved energy efficiency and better environmental control, particularly in the area of sulfide smelting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Kubaschewski, E.L. Evans and C.B. Alcock, Metallurgical Thermochemistry, 4th ed. (Oxford: Pergamon Press, 1967).

    Google Scholar 

  2. I. Barin, O. Knacke and O. Kubaschewski, Thermochemical Properties of Inorganic Substances, vol. I (1973), vol. II (1977) (Berlin: Springer Verlag).

    Google Scholar 

  3. L.B. Pankratz et al., Bureau of Mines Bulletins no. 672— “Thermodynamic Properties of Elements and Oxides ” (1982), no. 674—“Thermodynamic Properties of Halides” (1984), no. 677—“Thermodynamic Data for Mineral Technology” (1984), no. 689—“Thermodynamic Properties of Sulfides” (1987), (Washington, D.C.: U.S. Government Printing Office).

    Google Scholar 

  4. M. Pourbaix, Atlas d’Equilibres Electrochimiques à 25°C (Paris: Gauthier, Villars, 1963).

    Google Scholar 

  5. R.M. Garrels and C.L. Christ, Equilibre des Minéraux et de Leurs Solutions Aqueuses (Paris: Gauthier, Villars, 1967).

    Google Scholar 

  6. M. Pourbaix and A. Pourbaix, eds., Diagrams of Chemical and Electrochemical Equilibria—Their Setting Up and Applications, Proceedings of a NATO advanced research workshop (Brussels: CEBELCOR, 1981).

    Google Scholar 

  7. D.R. Stull and H. Prophet, JANAF Thermodynamical Tables U.S. Department of Commerce, Washington (1971) and supplements by M.W. Chase et al., J. Phys. Chem. Ref. Data, 3 (1974), p. 311; 7 (1978), p. 793.

    Google Scholar 

  8. A.D. Pelton, C.W. Bale and W.T. Thompson, FACT System, Montreal, Quebec, Canada.

  9. Y. Deniel and A. Jacquot, Thermodata, Bibliothèque Universitaire Sciences St. Martin d’Hères (Grenoble), France.

  10. NPL ALLOYDATA Bank, National Physical Laboratory, Teddington, Middlesex, U.K.

  11. H.A. Fine and G.H. Geiger, Handbook on Material and Energy Balance Calculations in Metallurgical Processes (Warrendale, PA: TMS-AIME, 1979).

    Google Scholar 

  12. T.I. Barry, ed., The Industrial Use of Thermochemical Data (London: the Chemical Society, 1980).

    Google Scholar 

  13. J.K. Tien and J.F. Elliott, eds., Metallurgical Treatises (New York: TMS-AIME, 1981).

    Google Scholar 

  14. L. Coudurier, D.W. Hopkins and I. Wilkomirsky, Fundamentals of Metallurgical Processes (Oxford: Pergamon Press, 1985).

    Google Scholar 

  15. J. Besson, Précis de Thermodynamique et de Cinétique Électrochimique, (Paris: Ellipses, Edition Marketing, 1984).

    Google Scholar 

  16. L. Meites, P. Zuman and A. Narayanan, Handbook Series in Inorganic Electrochemistry (Boca Raton: CRC Press, vol. 1, 1978, vol. 2, 1981, vol. 3, 1983).

    Google Scholar 

  17. R.M. Pytkowicz, Activity Coefficients in Electrolyte Solutions, two volumes (Boca_Raton: CRC Press, 1979).

    Google Scholar 

  18. J. Kragten, Atlas of Metal-Ligand Equilibria in Aqueous Solution (New York: John Wiley and Sons, 1978).

    Google Scholar 

  19. T.I. Barry, ed., Chemical Thermodynamics in Industry: Models and Computations—Critical Reports on Applied Chemistry, vol. 8 (London: Blackwell Scientific Publications, 1985).

    Google Scholar 

  20. M. Hansen and K. Anderko, Constitution of Binary Alloys, (New York: McGraw Hill, 1958); first supplement by R.P. Elliott (1965); second supplement by F.A. Shunk (1969).

    Google Scholar 

  21. T.B. Massalski, J.L. Murray, L.H. Bennett and H. Baker, Binary Alloy Phase Diagrams, two volumes (Metals Park, OH: ASM, 1986).

    Google Scholar 

  22. Phase Diagrams for Ceramists, (Columbus, Ohio: American Ceramic Society, 1956).

  23. V. Raghavan, Phase Diagrams of Ternary Iron Alloys, (Metals Park, OH: ASM, 1987).

    Google Scholar 

  24. L.H. Bennett, ed., Computer Modelling of Phase Diagrams (Warrendale, PA: TMS, 1986).

    Google Scholar 

  25. A. Yazawa, Met. Trans., 10B (1979), pp. 307–321.

    CAS  Google Scholar 

  26. G.R. Belton and W.L. Worrell, eds., Heterogeneous Kinetics at Elevated Temperatures (New York: Plenum Press, 1970).

    Google Scholar 

  27. J. Szekely and N.J. Themelis, Rate Phenomena in Process Metallurgy (New York: Wiley Interscience, 1971).

    Google Scholar 

  28. H.Y. Sohn and M.E. Wadsworth, eds., Rate Processes of Extractive Metallurgy (New York: Plenum Press, 1979).

    Google Scholar 

  29. R.G. Bautista, ed., Hydrometallurgical Process Fundamentals (New York: Plenum Press, 1984).

    Google Scholar 

  30. J. Szekely et al., eds., Mathematical Modelling of Materials Processing Operations (Warrendale, PA: TMS, 1987).

    Google Scholar 

  31. Hydrometallurgy 81, proc. of a symposium held at UMIST, Manchester, U.K. (London: Society of Chemical Industry, 1981).

  32. K. Osseo-Asare and J.D. Miller, Hydrometallurgy (Warrendale, PA: TMS, 1982).

    Google Scholar 

  33. J.M. Cigan, T.S. Mackey and T.J. O’Keefe, eds., Lead-Zinc-Tin ’80 (Warrendale, PA: TMS, 1979), p. 407.

    Google Scholar 

  34. G.M. Ritcey and A.W. Ashbrook, Solvent Extraction: Principles and Applications to Process Metallurgy, two volumes (Amsterdam: Elsevier, 1984).

    Google Scholar 

  35. A.W. Ashbrook, Solvent Extraction: Principles and Applications to Process Metallurgy, two volumes (Amsterdam: Elsevier, 1984) Op. cit. 34, vol. II., p. 167.

  36. Extraction Metallurgy 85 (London: IMM, 1985), p. 1.

  37. H.Y. Sohn and E.S. Geskin, eds., Metallurgical Processes for the Year 2000 and Beyond (Warrendale, PA: TMS, 1988), p. 50.

    Google Scholar 

  38. D.J. Robinson and S.E. James, eds., Anodes for Electrowinning (Warrendale, PA: TMS, 1984).

    Google Scholar 

  39. I.H. Warren, ed., Application of Polarization Measurements in the Control of Metal Deposition (Amsterdam: Elsevier, 1984).

    Google Scholar 

  40. K. Osseo-Asare and J.D. Miller, Hydrometallurgy (Warrendale, PA: TMS, 1982)Op. cit. 32, p. 659.

  41. International Conference on Cobalt: Metallurgy and Uses, proc. in 2 volumes (Brussels: Benelux Metallurgie, November 1981), p. 63.

  42. M.J. Jones, ed., Complex Sulphide Ores, proc. of an international conference held in Rome (London: IMM, October 1980).

    Google Scholar 

  43. Extraction Metallurgy ’89, IMM, London, p. 705.

  44. P.D. Parker, ed., Chloride Electrometallurgy (Warrendale, PA: TMS, 1982), p. 221.

    Google Scholar 

  45. Op. cit. 42, p. 140.

    Google Scholar 

  46. J.D. Miller, Hydrometallurgy (Warrendale, PA: TMS, 1982) Op. cit. 32, p. 165.

  47. Extraction Metallurgy 81 (London: IMM, September 1981), p. 149.

  48. Op. cit. 36, p. 967.

  49. A.W. Ashbrook, Solvent Extraction: Principles and Applications to Process Metallurgy, two volumes (Amsterdam: Elsevier, 1984) Op. cit. 34, p. 209.

  50. Op. cit. 44, pp. 131, 189.

    Google Scholar 

  51. J.D. Miller, Hydrometallurgy (Warrendale, PA: TMS, 1982) Op. cit. 32, p. 659.

  52. Op. cit. 36, p. 997.

  53. J.E. Hoffmann et al., eds., The Electrorefining and Winning of Copper, (Warrendale, PA: TMS, 1987), p. 239.

    Google Scholar 

  54. J.D. Miller, Hydrometallurgy (Warrendale, PA: TMS, 1982) Op. cit. 32, p. 72.

  55. V. Kudryk and Y.K. Rao, Physical Chemistry of Extractive Metallurgy (Warrendale, PA: TMS, 1985), p. 353.

    Google Scholar 

  56. Op. cit. 53, p. 47.

    Google Scholar 

  57. T.J. O’Keefe and J.W. Evans, eds., Electrochemistry Research Needs for Mineral and Primary Materials Processing, USBM and NSF Workshop held at the University of Missouri—Rolla (June 1983).

    Google Scholar 

  58. H.Y. Sohn, D.B. George and A.D. Zunkel, eds., Advances in Sulfide Smelting, vol. 1 (Warrendale, PA: TMS, 1983), p. 5.

    Google Scholar 

  59. D.B. George and A.D. Zunkel, eds., Advances in Sulfide Smelting, vol. 1 (Warrendale, PA: TMS, 1983) Op. cit. 58, vol. 2, p. 403.

  60. D.B. George and A.D. Zunkel, eds., Advances in Sulfide Smelting, vol. 1 (Warrendale, PA: TMS, 1983) Op. cit. 58, pp. 99, 203.

  61. Y.K. Rao, Physical Chemistry of Extractive Metallurgy (Warrendale, PA: TMS, 1985) Op. cit. 55, p. 327.

  62. D.B. George and A.D. Zunkel, eds., Advances in Sulfide Smelting, vol. 1 (Warrendale, PA: TMS, 1983) Op. cit. 58, vol. 2, p. 239.

  63. K. Tozawa, ed., Zinc ’85 (Tokyo: MMIJ, October 1985), p. 841.

    Google Scholar 

  64. E.S. Geskin, eds., Metallurgical Processes for the Year 2000 and Beyond (Warrendale, PA: TMS, 1988) Op. cit. 37, p. 301.

  65. Op. cit. 43, p. 3.

  66. Op. cit. 42, p. 345.

    Google Scholar 

  67. Pyrometallurgy ’87 (London: IMM, 1987), pp. 265, 389, 725, 1031.

  68. Op. cit. 43, p. 467.

  69. H.A. Fine and D.R. Gaskell, eds., Metallurgical Slags and Fluxes (Warrendale, PA: TMS, 1984).

    Google Scholar 

  70. R. Winand, “Intérêt Métallurgique des Mélanges d’Oxydes Fondus,” Revue de Métallurgie, Mémoires et Etudes Scientifiques, 86 (1989), pp. 191–208.

  71. E.S. Geskin, eds., Metallurgical Processes for the Year 2000 and Beyond (Warrendale, PA: TMS, 1988) Op. cit. 37, pp. 37B, 535.

  72. E. Ozberk, D.W. Macmillan and R.I.L. Guthrie, eds., The Production of Liquid Aluminium, TMS of CIM (1986), p. 141.

    Google Scholar 

  73. Light Metals 1988 (Warrendale, PA: TMS, 1988), p. 817.

  74. Op. cit. 73, p. 799.

  75. J.F. Elliott, eds., Metallurgical Treatises (New York: TMS-AIME Op. cit. 13, p. 159.

  76. Op. cit. 73, p. 807.

  77. Op. cit. 43, p. 209.

  78. Op. cit. 48, p. 195.

  79. G. Lütjering, U. Zwicker and W. Bunk, eds., Titanium Science and Technology, vol. 1, (Oberursel, FRG: DGM, 1985), p. 3.

    Google Scholar 

  80. F.H. Hayes et al., JOM, 36 (1984), pp. 70–76.

    CAS  Google Scholar 

  81. Sixth World Conference on Titanium, abstracts by Société Française de Métallurgie, Cannes, June 1988, p. 174.

  82. Op. cit. 81, p. 209.

  83. Op. cit. 81, p. 173.

  84. Op. cit. 81, p. 147.

  85. P.R. Taylor, H.Y. Sohn and N. Jarrett, eds., Recycle and Secondary Recovery of Metals (Warrendale, PA: TMS, 1985).

    Google Scholar 

  86. R.J. Fruehan, Ladle Metallurgy Principles and Practices (Warrendale, PA: ISS, 1985).

    Google Scholar 

  87. R. Guthrie and F. Wheeler, eds., International Symposium on Ladle Steelmaking and Furnaces, CIM, Montreal, Quebec, Canada (August 1988).

    Google Scholar 

  88. L. Rosato, ed., International Symposium on Statistical Process Control in the Non-Ferrous and Mineral Process Industry, CIM, Montreal, Quebec, Canada (August 1988).

    Google Scholar 

  89. R.G. Bautista and M.M. Wong, Rare Earths (Warrendale, PA: TMS, 1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Editor’s Note: This article is adapted from a keynote lecture presented at the 1989 TMS Fall Extractive Meeting.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Winand, R. Reflecting on the new goals in nonferrous extractive research. JOM 42, 24–30 (1990). https://doi.org/10.1007/BF03220919

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03220919

Keywords

Navigation