Skip to main content
Log in

Modeling the evolution of equiaxed miorostructures in castings

  • Casting
  • Research Summary
  • Published:
JOM Aims and scope Submit manuscript

Abstract

With the goal of expanding the scope of solidification modeling, research initiatives have ranged from simply predicting the path of the isotherms to exploring the more complex problem of predicting microstructural evolution. This article presents the mathematical and physical principles involved in this type of modeling and provides examples for a number of Al-Si, Al-Cu, gray iron and ductile iron alloys. Clearly micro- and macrostructural modeling represents significant progress in the field of solidification and the subsequent cooling of castings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.T. Berry, R.D. Pehlke and P.V. Desai, Interdisciplinary Issues in Materials Processing and Manufacturing, Vol. 1, S.K. Samanta et al., editors, the American Soc. of Mech. Eng. (1987), p. 233.

    Google Scholar 

  2. M. Rappaz and D.M. Stefanescu, Metals Handbook, 9th edition, Vol. 15, ASM International (1988), p. 883.

    Google Scholar 

  3. W. Oldfield, ASM Trans. (1966), 59, p. 945.

    CAS  Google Scholar 

  4. K.C. Su, I. Ohnaka, I. Yaunauchi and T. Fukusako, The Physical Metallurgy of Cast Iron, eds. H. Fredriksson and M. Hillert, North-Holland, New York (1984), p. 181.

    Google Scholar 

  5. D.M. Stefanescu and C.S. Kanetkar, State of the Art of Computer Simulation of Casting and Solidification Processes, ed. H. Fredriksson, Les Editions de Physique, Paris (1986), p. 255.

    Google Scholar 

  6. D.M. Stefanescu, D. Bandyopadhyay and G. Upadhya, Casting of Near Net Shape Products, eds. Y. Sahai et al., TMS (1988), p. 153.

    Google Scholar 

  7. H. Esaka and W. Kurz, J. of Crystal Growth (1984), 69, p. 362.

    CAS  Google Scholar 

  8. J. Dustin and W. Kurz, Z. Metallkunde (1986), 77, p. 265.

    CAS  Google Scholar 

  9. M. Rappaz, Ph. Thevoz, Acta Metallurgica (1987), 35, 7, p. 1487.

    CAS  Google Scholar 

  10. C.S. Kanetkar and D.M. Stefanescu, Modeling of Casting and Welding Processes, ed. A. Giamei, TMS, Warrendale, PA (1988).

    Google Scholar 

  11. D.M. Stefanescu and C.S. Kanetkar, Computer Simulation of Microstructural Evolution, ed. D.J. Srolovitz, TMS, Warrendale, PA (1985), p. 307.

    Google Scholar 

  12. R.E. Reed-Hill, Physical Metallurgy Principles, Litton Ed. Publ., Monterey, CA (1973), p. 677.

    Google Scholar 

  13. J.M. Frye, E.E. Stansbury and D.L. McElroy, Trans. AIME, (1953), p. 219.

    Google Scholar 

  14. D.M. Stefanescu and C.S. Kanetkar, Proceedings of 54th International Foundry Congress, CIATF, New Delhi, India (1987), paper 19.

    Google Scholar 

  15. C.S. Kanetkar, D.M. Stefanescu, N. El-Kaddah and I.G. Chen, Solidification Processing 1987, ed. H. Jones, the Institute of Metals, London (1988), p. 404.

    Google Scholar 

  16. Ph. Thevoz, Zou Jie and M. Rappaz, ibid., p. 168.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stefanescu, D.M., Upadhya, G., Bandyopadhyay, D.K. et al. Modeling the evolution of equiaxed miorostructures in castings. JOM 41, 22–25 (1989). https://doi.org/10.1007/BF03220820

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03220820

Keywords

Navigation