Skip to main content
Log in

Processing intermetallic composites by self-propagating, high-temperature synthesis

  • Advanced Processing
  • Applied Technology
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Initiated at the interface of dissimilar elemental metal foils, a self-propagating, high-temperature synthesis (SHS) reaction can be used to produce a fully dense, well-bonded metal-intermetallic layered composite. In the research described here, aluminum foils were sandwiched between metal foils (Fe, Ni, Ti) and heated in a hot press to approximately the melting point of aluminum. An SHS reaction occurred at the metal-aluminum interface, consuming all of the aluminum foil and part of the metal foil, resulting in a strongly bonded metal-aluminide interface. Tensile tests conducted at room temperature revealed that composites can be designed to behave in a high-strength and high-toughness manner by altering the thicknesses of the elemental foils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.H. Walters and H.E. Cline, “The Effect of Solidification Rate on Structure and High-Temperature Strength of the Eutectic NiAl-Cr,” Metal l. Trans. A, 1A (1970), pp. 1221–1229.

    Google Scholar 

  2. J.J. Brennen, “Increasing the Impact Strength of Si3N4 Through Fibre Reinforcement,” Special Ceramics 6, ed. P. Popper (Stoke-on-Trent, U.K.: British Ceramic Research Association, 1975), p. 123.

    Google Scholar 

  3. E. Fitzer and W. Remmele, “Possibilities and Limits of Metal Reinforced Refractory Suicides Especial ly Molybdenum Disilicide,” Proc. 5th Int. Conf. Comp. Matls.—ICCM-V, ed. W.C. Harrigan, Jr., J.R. Strife, and A.K. Dhingra (Warrendal e, PA: TMS, 1985), pp. 515–530.

    Google Scholar 

  4. P. Hing and G.W. Groves, “The Strength and Fracture Toughness of Polycrystal line Magnesium Oxide Containing Metal lic Particles and Fibres,” J. Mater. Sci., 7 (1972), pp. 427–434.

    CAS  Google Scholar 

  5. J.L. Chermant and F. Osterstock, “Fracture Toughness and Fracture of WC-Co Composites,” J. Mater. Sci., 11 (1976), pp. 1939–1951.

    CAS  Google Scholar 

  6. H.E. Deve et al., “Ductile Reinforcement Toughening of TiAl: Effects of Debonding and Ductility,” Acta Metal l, et Mater., 38 (1990), pp. 1491–1502.

    CAS  Google Scholar 

  7. V.C. Nardone and J.R. Strife, “NiAl-Based Microstructural ly Toughened Composites,” Metal l. Trans. A, 22A (1991), pp. 183–189.

    CAS  Google Scholar 

  8. M.J. Mal oney and R.J. Hecht, “Development of Continuous-Fiber-Reinforced MoSi2-Base Composites,” Mater. Sci. Engr., A155 (1992), pp. 19–31.

    Google Scholar 

  9. M.G. Mendiratta, J.J. Lewandowski, and D.M. Dimiduk, “Strength and Ductile-Phase Toughening in the Two-Phase Nb/ Nb5Si3 Al loys,” Metal l. Trans. A, 22A (1991) pp. 1573–1583.

    CAS  Google Scholar 

  10. K.T. VenkateswaraRao, W.O. Soboyejo, and R.O. Ritchie, “Ductile-Phase Toughening and Fatigue-Crack Growth in Nb Reinforced Molybdenum Disilicide Intermetal lic Composites,” Metal l. Trans. A, 23A (1992), pp. 2249–2257.

    Google Scholar 

  11. D.E. Al man, “The Effect of Ductile Phase (Nb) Reinforcement Morphology on the Mechanical Behavior of an Intermetal lic Matrix (MoSi2),” Ph.D. thesis, au]Rensselaer_Polytechnic Institute, Troy, New York (1992).

    Google Scholar 

  12. D.E. Alman et al., “Processing, Structure and Properties of MoSi2-Base Composites,” Mater. Sci. Engr., A155 (1992), pp. 85–93.

    CAS  Google Scholar 

  13. R.G. Rowe and D.W. Kelly, “The Synthesis and Eval uation of Nb3Al-Nb Laminated Composites,” Intermetal lic Matrix Composites II, ed. D.B. Miracle, D.L. Anton, and J.A. Graves (Pittsburgh, PA: MRS, 1992), pp. 411–416.

    Google Scholar 

  14. D.A. Hardwick, and R.C. Cordi, “Intermetal lic Matrix Composites by Physical Vapor Deposition,” Intermetal lic Matrix Composites, ed. D.L. Anton et al. (Pittsburgh, PA: MRS, 1990), pp. 65–70.

    Google Scholar 

  15. Z.A. Munir, “Synthesis of High Temperature materials by Self-Propagating Combustion Methods,” Bull. Amer. Ceram. Soc, 67(2) (1988), pp. 342–349.

    CAS  Google Scholar 

  16. Z.A. Munir, “Reaction Synthesis Process: Mechanisms and Characterization,” Metal l. Trans. A., 23A (1992), pp. 7–13.

    CAS  Google Scholar 

  17. Z.A. Munir, “The Synthesis and Consolidation of Powders by Self-Propagating Combustion Method,” Reviews in Particulate materials, 1 (1993), pp. 41–74.

    CAS  Google Scholar 

  18. A. Bose et al., “Elemental Powder Approaches to Ni3Al-Matrix Composites,“ /. Metal s, 40(9) (1988), pp. 14–17.

    CAS  Google Scholar 

  19. J.C. Rawers and W.R. Wrzesinski, “Reaction-Sintered Hot-Pressed TiAl,” J. Mater. Sci., 27 (1992), pp. 2877–2886.

    Google Scholar 

  20. D.E. Alman and N.S. Stoloff, “Powder Fabrication of Monolithic and Composite NiAl,” Intl. J. Powder. Met., 27 (1) (1991), pp. 29–41.

    CAS  Google Scholar 

  21. D.E. Alman and N.S. Stoloff, “Preparation of MoSi2/SiC Composites from Elemental Powders by Reactive Co-Synthesis,” Scripta Metal l. et Mater., 28 (1993), pp. 1525–1530.

    CAS  Google Scholar 

  22. G. Wang and M. Dahms, “Synthesizing Gamma-TiAl Al loys by Reactive Powder Processing,” JOM, 45(6) (1993), pp. 52–56.

    CAS  Google Scholar 

  23. L. Lu et al., “Reaction Synthesis of NbAl 3 Matrix Composites, Intermetal lic Matrix Composites, ed. D.L. Anton et al. (Pittsburgh, PA: MRS, 1990), pp. 79–87.

    Google Scholar 

  24. J. Kajuch, J.D. Rigney, and J.J. Lewandowski, “Processing and Properties of Nb5Si3 and Tough Nb5Si3/Nb Laminates,” Mater. Sci. Engr., A155 (1992), pp. 59–65.

    CAS  Google Scholar 

  25. H.E. Maupin and J.C. Rawers, “Metal-Intermetal lic Composites Formed by Reaction-Sintering Elemental Powders,” J. Mater. Sci. Letts., 12 (1993), pp. 540–541.

    CAS  Google Scholar 

  26. D.M. Matson and Z.A. Munir, “Combustion Synthesis of Intermetal lic Compounds Using Ti, Ni and Cu Wires,” Mater. Sci. Engr., A153 (1992), pp. 700–705.

    CAS  Google Scholar 

  27. U. Anselmi-Tamburini and Z.A. Munir, “The Propagation of a Solid-State Combustion Wave in Ni-Al Foils,” J. Appl. Phys., 66(10) (1989), pp. 5039–5045.

    CAS  Google Scholar 

  28. J.C. Rawers, D.E. Al man, and J.A. Hawk, “Overview: Layered Meta-Intermetal lic-Composites Formed by SHS Reactions,” Intl. J. Self-Prop. High Temp. Syn., 2 (1) (1993), pp. 12–24.

    CAS  Google Scholar 

  29. D.E. Alman, J.A. Hawk, and J.C. Rawers, “Microstructural and Failure Characteristics of Metal-Intermetal lic Layered Sheet Composites,” submitted to Metal. Trans. A (1993).

    Google Scholar 

  30. J.C. Rawers et al., “Formation of Sheet Metal-Intermetal lic Composites by Self-Propagating, High-Temperature Reactions,” submitted to J. Mater. Sci. Letts. (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alman, D.E., Hawk, J.A., Petty, A.V. et al. Processing intermetallic composites by self-propagating, high-temperature synthesis. JOM 46, 31–35 (1994). https://doi.org/10.1007/BF03220646

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03220646

Keywords

Navigation