Skip to main content
Log in

Melting and casting processes for high-temperature intermetallics

  • Melting and Solidification
  • Overview
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Although considerable effort has been devoted to characterizing the properties of high-temperature intermetallics, melting and casting processes for these materials have been slower to advance. A variety of techniques may be appropriate for the melt processing of intermetallics, but the selection of the process will depend on numerous factors related to melt cleanliness, solidification microstructure and type of alloy. Advanced processes, such as directional solidification and single-crystal growth, still require some work before they can be successfully applied to intermetallics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. .J.H. Westbrook, “Intermetallic Compounds: Their Past and Promise,” Met. Trans. A, 8A (September 1977), p. 1327.

    CAS  Google Scholar 

  2. L. Brewer, “Nature of Bonding in Transition—Metal Aluminides,” J. Phys. Chem., 94,(3) (1990), p. 1196.

    CAS  Google Scholar 

  3. A.I. Taub and R.L. Fleischer, “Intermetallic Compounds For High-Temperature Structural Use,” Science, 24 (February 1989), p. 617.

    Google Scholar 

  4. O.D. Sherby, “Factors Affecting The High Temperature Strength of Polycrystalline Solids,” Acta Met., 10 (February 1962), p. 135.

    CAS  Google Scholar 

  5. D.P. Pope and S.S. Ezz, “Mechanical Properties of Ni3Al and Ni-based Alloys with High Volume Fraction of γ,” Int’l Metals Rev., 29,(3), p. 136.

  6. R.L. Fleischer and A.I. Taub, “Selecting High-Temperature Structural Intermetallic Compounds: The Materials Science Approach,” JOM, 41,(9) (September 1989), pp. 8–11.

    Article  CAS  Google Scholar 

  7. A. Choudhury and H. Kemmer, “Vacuum Induction Melting (VIM),” Metals Handbook, 9th ed., vol. 15 (Metals Park, OH: ASM, 1988), p. 393.

    Google Scholar 

  8. L.W. Lherbier, “Melting and Refining,” Superalloys II, ed. C.T. Sims, N.S. Stoloff and W.C. Hagel (New York: John Wiley & Sons, 1987), p. 387.

    Google Scholar 

  9. V.K. Sikka, “Commercialization of Nickel Aluminides,” High Temperature Aluminides & Intermetallics, ed. S.H. Wang, C.T. Liu, D.P. Pope and J.O. Steigler (Warrendale, PA: TMS, 1990), p. 505.

    Google Scholar 

  10. V.K. Sikka, “Near Net-Shape Casting of Sheet and Bar of Ordered Nickel Aluminide Alloys,” Casting of Near Net Shape Products, ed. Y. Sahai, J.E. Battles, R.S. Carbonara and C.E. Mobley (Warrendale, PA: TMS, 1988), p. 315.

    Google Scholar 

  11. Y. Nishiyama, T. Miyashita, S. Isobe and T. Noda, “Development of Titanium Aluminide Turbo-Charger Rotors,” High Temperature Aluminides & Intermetallics, ed. S.H. Wang, C.T. Liu, D.P. Pope, and J.O. Stiegler (Warrendale, PA: TMS, 1990), p. 557.

    Google Scholar 

  12. “Levitation-Melting Method Intrigues Investment Casters,” Adv. Mat. & Proc., 139, (3) (March 1991), p. 42.

  13. A. Choudhury and E. Weingarter, “Vacuum Arc Remelting (VAR),” Metals Handbook, 9th ed., vol. 15 (Metals Park, OH: ASM, 1988), p. 40

    Google Scholar 

  14. H.B. Bomberger and F.H. Froes, “The Melting of Titanium,” JOM 36,(12), (December 1984), p. 39.

    CAS  Google Scholar 

  15. H. Pannen and G. Sick, “Plasma Melting & Casting,” Metals Handbook, 9th ed., vol. 15 (Metals Park, OH: ASM, 1988), p. 419.

    Google Scholar 

  16. P. Mathur, S. Annavarapu, D. Apelian and A. Lawley, “Process Control, Modeling and Applications of Spray Casting,” JOM 41,(10), (October 1989), p. 23.

    Article  CAS  Google Scholar 

  17. L.Z. Zhuang, I. Majewska-Glabus, R. Vetter and J. Duszczyk, “Microstructure of the Osprey Processed Ni3Al-X Intermetallic in Conjunction with Solidification Model at the Deposition,” Scripta Met., 24,(11), (1990), p. 2030.

    Google Scholar 

  18. C.T. Liu and J.O. Stiegler, “Ductile Ordered Intermetallic Alloys,” Science, 226 (November 1984), p. 636.

    CAS  Google Scholar 

  19. T. Hirano, “Improvement of Room Temperature Ductility of Stoichiometric Ni3Al by Unidirectional Solidification,” Acta Met., 38,(12), p. 2667.

  20. K.M. Chang, “Tensile and Impact Properties of Directionally Solidified Fe-40Al Intermetallic,” Met. Trans. A, 21A (November 1990), p. 3027.

    CAS  Google Scholar 

  21. C.H. Lee, T. Caulfield and J.K. Tien, “The Characterization of the Process Parameters for The Directional Solidification of Ni3Al,” Scripta Met., 21 (1987), p. 925.

    CAS  Google Scholar 

  22. S. Nourbakhsh and P. Chen, “Microstructure and Mechanical Properties of Rapidly Solidified and Annealed NiAl Intermetallic Alloys,” Acta Met., 37,(6), p. 1573.

  23. S.C. Jha, T.A. Mozhi and R. Ray, “Rapidly Solidified Al-Ti Alloys via Advanced Melt Spinning,” JOM 41,(5), (May 1989), p. 27.

    Article  CAS  Google Scholar 

  24. C.T. Liu and J.O. Stiegler, “Ordered Intermetallic,” Metals Handbook, 10th ed., vol. 2 (Materials Park, OH: ASM, 1990) p. 913.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sen, S., Stefanescu, D.M. Melting and casting processes for high-temperature intermetallics. JOM 43, 30–34 (1991). https://doi.org/10.1007/BF03220565

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03220565

Keywords

Navigation