Skip to main content
Log in

Analyzing thermal creep strain of a tokamak first-wall steel

  • Feature
  • Overview
  • Published:
JOM Aims and scope Submit manuscript

Abstract

It is widely anticipated that one formulation of ferritic steel, HT9, will be utilized in the fabrication of the first wall of a nuclear fusion (tokamak) reactor. In this respect, the thermal creep behavior of this material is an important consideration in the final selection decision. Using short-term experimental data, relations which describe the dependence of the thermal creep strain of this alloy on the operational parameters (e.g., time, stress and temperature) have been obtained. This allows estimates to be made of the long-term (design) values of the thermal creep strain for any specified combination of operational parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Tillack et al., Fusion Technology, 8 (1985), pp. 1091–1099.

    Google Scholar 

  2. A.E. Dabiri, Fusion Technology, 12 (1987), pp. 238–248.

    CAS  Google Scholar 

  3. R.E. Gold et al., Fusion Nucl. Tech./Fusion, 1 (1981), pp. 169–237.

    CAS  Google Scholar 

  4. D.L. Smith et al., Fusion Technology, 8 (1985), pp. 10–44.

    CAS  Google Scholar 

  5. J.W. Davis et al., Fusion Technology, 8 (1985), pp. 1927–1943.

    CAS  Google Scholar 

  6. S. Majumdar, Fusion Technology, 8 (1985), pp. 1945–1955.

    Google Scholar 

  7. T.H. Courtney, Mechanical Behavior of Materials (New York: McGraw-Hill, 1990), pp. 537–539.

    Google Scholar 

  8. I. Le May, Principles of Mechanical Metallurgy (London: Edward Arnold Ltd., 1981), pp. 362–368.

    Google Scholar 

  9. T.H. Courtney, Mechanical Behavior of Materials (New York: McGraw-Hill, 1990), pp. 541–544.

    Google Scholar 

  10. R.W. Evans and B. Wilshire, Creep of Metals and Alloys (London: Institute of Metals, 1985), pp. 202–243.

    Google Scholar 

  11. K. Maruyama and H. Oikawa, Trans. Japan Inst. of Metals, 28 (1987), pp. 815–828.

    Google Scholar 

  12. K. Maruyama and H. Oikawa, Trans. ASME J. Pressure Vessel Techn., 109 (1987), pp. 142–146.

    CAS  Google Scholar 

  13. K. Maruyama and H. Oikawa, Trans. Japan Inst. of Metals, 28 (1987), pp. 291–298.

    Google Scholar 

  14. S.G.R. Brown, Proc. 3rd. Int. Conf. on Creep and Fracture of Engineering Materials and Structures, ed. B. Wilshire and R.W. Evans (London: Institute of Metals, 1987), pp. 829–838.

    Google Scholar 

  15. Sandvik Steel Co., Technical Information on Seamless Tube and Bar Material (Scranton, PA: 1983).

    Google Scholar 

  16. H.W. Sorenson, Parametric Estimation: Principles and Problems (New York: Marcel Dekker, 1980) pp. 61–66.

    Google Scholar 

  17. SAS Institute, Inc., SAS User’s Guide: Statistics, 1985 edition (Cary, NC: 1985), pp. 575–606.

    Google Scholar 

  18. S. Majumdar and B.K. Pai, “Stress-Related Problems in Tokamak Fusion Reactor First Walls,” Fusion Technology, 15 (1989), pp. 1560–1570.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lewis, G., Chuang, C.C. Analyzing thermal creep strain of a tokamak first-wall steel. JOM 42, 22–23 (1990). https://doi.org/10.1007/BF03220463

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03220463

Keywords

Navigation