Skip to main content
Log in

Ion-beam doping during molecular beam epitaxy

  • Semiconductor Processing
  • Overview
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Compositional modifications on the atomic scale, made possible through molecular beam epitaxy, have opened up a new range of semiconductor devices. Some recent work has investigated the addition of ion dopants during molecular beam epitaxy, with the goal of improving electrical and optical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Esaki and R. Tsu, “Superlattice and Negative Differential Conductivity in Semiconductors,” IBM J. Res. Develop., 14 (1970), pp. 61–65.

    CAS  Google Scholar 

  2. A.C. Gossard, P.M. Petroff, W. Weigmann, R. Dingle and A. Savage, “Epitaxial Structures with Alternate-Atomic-Layer Cqmposition Modulation,” Appl. Phys. Lett., 29 (1977), pp. 323–325.

    Google Scholar 

  3. J.R. Arthur, “Adsorption of Zn on GaAs,” Surf. Sci., 38 (1973), pp. 394–412.

    CAS  Google Scholar 

  4. See A. Rockett, T. J. Drummond, J.E. Greene and H. Morkoc, “Surface Segregation Model for Sn-Doped GaAs Growth By Molecular Beam Epitaxy,” J. Appl. Phys., 53 (1982), pp. 7085–7087 (and references contained therein).

    CAS  Google Scholar 

  5. S.A. Barnett and J.E. Greene, “Si Molecular Beam Epitaxy: A Model for Temperature-Dependent Incorporation Probabilities and Depth Distributions in Dopants Exhibiting Strong Surface Segregation,” Surf. Sci., 151 (1985), pp. 67–90.

    CAS  Google Scholar 

  6. J.E. Greene, S.A. Barnett, A. Rockett and G. Bajor, “Modeling of Dopant Incorporation, Segregation, and Ion/Surface Interaction Effects During Semiconductor Film Growth by Molecular Beam Epitaxy and Plasma-Based Techniques,” Appl. Surface Sci., 22/23 (1985), pp. 520–544.

    Google Scholar 

  7. R.A. Metzger and F.G. Allen, “Evaporative Antimony Doping of Silicon During Molecular Beam Epitaxial Growth,” J. Appl. Phys., 55 (1984), pp. 931–940.

    CAS  Google Scholar 

  8. N. Matsunaga, T. Suzuki and J. Takahashi, “Ionized-Beam Doping in Molecular Beam Epitaxy of GaAs and AlGaAs,” J. Appl. Phys., 49 (1979), pp. 5710–5715.

    Google Scholar 

  9. J.C. Bean and R. Dingle, “Luminescent p-GaAs Grown By Zinc Ion Doped MBE,” Appl. Phys. Lett, 35 (1979), pp. 925–927.

    CAS  Google Scholar 

  10. J.E. Greene, S.A. Barnett, K.C. Cadien and M.A. Ray, “Growth of Single Crystal GaAs and Metastable (GaSb)Ge Alloys by Sputter Deposition, Ion-Surface Interaction Effects,” J. Crystal Growth, 56 (1982), pp. 389–401.

    CAS  Google Scholar 

  11. Y. Ota, “Si Molecular Beam Epitaxy with Simultaneous Ion Implant Doping,” J. Appl. Phys., 51 (1980), pp. 1102–1110.

    CAS  Google Scholar 

  12. A. Rockett, S.A. Barnett and J.E. Greene, “A Low-Energy, Ultra-High Vacuum, Solid-Metal Ion Source for Accelerated Ion Doping During Molecular Beam Epitaxy,” J. Vac. Sci. Tech., B 2 (1985), pp. 306–313.

    Google Scholar 

  13. M.A. Hasan, J. Knall, S.A. Barnett, J.-E. Sundgren, A. Rockett and J.E. Greene, “A Low-Energy Metal-Ion Source for Primary-Ion Deposition and Accelerated-Ion Doping During Molecular Beam Epitaxy,” J. Vac. Sci. Tech., B 5 (1987), pp. 1332–1339.

    Google Scholar 

  14. W.-X. Ni, J. Knall, M.A. Hasan, G.V. Hansson, J.-E. Sundgren, S.A. Barnett, L.C. Markert and J.E. Greene, “Kinetics of Dopant Incorporation Using an Antimony Low-Energy Ion Beam (<400 eV) During Growth of Si (001) Films By Molecular Beam Epitaxy,” unpublished.

  15. M.A. Hasan, J. Knall, S.A. Barnett, J.-E. Sundgren, L.C. Markert, A. Rockett and J.E. Greene, “Incorporation of Accelerated Low-Energy (50–500 eV) In Ions in Si (100) Films During Growth by Molecular Beam Epitaxy,” J. Appl. Phys., 65 (1989), pp. 172–179.

    CAS  Google Scholar 

  16. S. Shimizu and S. Komiya, “Effects of Ga and Si Ionization on the Growth of Ga Doped Si MBE,” J. Vac. Sci. Tech., 18 (1981), pp. 765–768.

    CAS  Google Scholar 

  17. M. Mannoh, Y. Nomura, K. Shinozaki, M. Mihara and M. Ishii, “Ionized MgDopingin Molecular-Beam Epitaxy of GaAs,” J. Appl. Phys., 59 (1986), pp. 1092–1095.

    CAS  Google Scholar 

  18. J.-P. Noel, N. Hirashita, L.C. Markert, Y.-W. Kim, J.E. Greene, J. Knall, W.-X. Ni, M.A. Hasan and J.E. Sundgren, “Electrical Properties of Si Films Doped with 200-eV In Ions During Growth By Molecular Beam Epitaxy,” J. Appl. Phys., 65 (1989), pp. 1189–1197.

    CAS  Google Scholar 

  19. K. Ohkawa, T. Mitsuyu, and O. Yamazaki, “Molecular Beam Epitaxial Growth of Nitrogen-Doped ZnSe with Ion Doping Technique,” J. Crystal Growth, 86 (1988), pp. 329–334.

    Google Scholar 

  20. P. Sharps, A.L. Fahrenbruch, A. Lopez-Otero and R.H. Bube, “Thin Films of p-Type CdTe Grown With Ion-Beam-Assisted Doping,” paper presented at the 1988 Fall MRS meeting, Boston, Massachusetts, December 2, 1988.

    Google Scholar 

  21. A. Rockett, J. Klem, S.A. Barnett, J.E. Greene and H. Morkoc, “Si Incorporation Probabilities and Depth Distributions in GaALAs Films Grown By Molecular-Beam Epitaxy,” J. Appl. Phys., 59 (1986), pp. 2777–2783.

    CAS  Google Scholar 

  22. Y. Iimura and M. Kawabe, “Be Doping Effect on Growth Kinetics of GaAs Grown By MBE,” Japan. J. Appl. Phys., 25 (1986), pp. L81–L84.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barnett, S.A., Greene, J.E. & Sundgren, J.E. Ion-beam doping during molecular beam epitaxy. JOM 41, 16–19 (1989). https://doi.org/10.1007/BF03220192

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03220192

Keywords

Navigation