Skip to main content
Log in

Summary

In recent years there has been a growing interest in techniques capable of analyzing sparse data, particularly gathered during Phase III clinical trials, and there is now pressure on manufacturers to obtain more kinetic and dynamic information from Phase III studies. Techniques for the analysis of sparse data are reviewed drawing on a number of examples taken from pharmacokinetic and pharmacodynamic experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Whiting B., Kelman A.W., Grevel J. (1986): Population pharmacokinetics. Theory and application. Clin. Pharmacokinet., 11, 387–401.

    Article  PubMed  CAS  Google Scholar 

  2. Aarons L. (1991): Population pharmacokinetics: theory and practice. Br. J. Clin. Pharmacol., 32, 669–670.

    PubMed  CAS  Google Scholar 

  3. New Strategies in Drug Development and Clinical Evaluation: the Population Approach. (1992): Rowland M., Aarons L. (eds). Luxembourg, Commission of the European Communities.

    Google Scholar 

  4. Jochemsen R. (1992): Current experience of population pharmacokinetics within the pharmaceutical industry: an introduction. In: Rowland M., Aarons L. (eds). New Strategies in Drug Development and Clinical Evaluation: the Population Approach. Luxembourg, Commission of the European Communities, pp. 127–130.

    Google Scholar 

  5. Gibaldi M., Perrier D. (1982): Pharmacokinetics. 2nd edn. New York, Marcel Dekker.

    Google Scholar 

  6. Lindstrom F.T., Birkes D.S. (1984): Estimation of population pharmacokinetic parameters using destructively obtained experimental data: a simulation study of the one-compartment open model. Drug Met. Rev., 15, 195–264.

    Article  CAS  Google Scholar 

  7. Ludden T., Allerheiligen S.R.B., Burk R.F. (1991): Application of population analysis to physiological pharmacokinetics. J. Pharmacokinet. Biopharm. (Suppl), 19, 101S-113S.

    Article  Google Scholar 

  8. Driscoll M.S., Ludden T.M., Casto D.T., Littlefield L.C. (1989): Evaluation of theophylline pharmacokinetics in a pediatric population using mixed effects models. J. Pharmacokinet. Biopharm., 17, 141–168.

    Article  PubMed  CAS  Google Scholar 

  9. Kelman A.W., Thomson A.H., Whiting B., Bryson S.M., Steedman D.A. (1984): Estimation of gentamicin clearance and volume of distribution in neonates and young children. Br. J. Clin. Pharmacol., 18, 685–692.

    PubMed  CAS  Google Scholar 

  10. Moore E.S., Faix R.G., Banagale R.C., Grasela T.H. (1989): The population pharmacokinetics of theophylline in neonates and young infants. J. Pharmacokinet. Biopharm., 17, 47–66.

    Article  PubMed  CAS  Google Scholar 

  11. Aarons L. (1991): The kinetics of flurbiprofen in synovial fluid. J. Pharmacokinet. Biopharm., 19, 265–269.

    Article  PubMed  CAS  Google Scholar 

  12. Winstanley P.A., Watkins W.M. (1992): Pharmacology and parasitology: integrating experimental methods and approaches to falciparum malaria. Br. J. Clin. Pharmacol., 33, 575–581.

    PubMed  CAS  Google Scholar 

  13. Beal S.L., Sheiner L.B. (1982): Estimating population kinetics. CRC Crit. Rev. Biomed. Eng., 8, 195–222.

    CAS  Google Scholar 

  14. Amisaki T., Tatsuhara T. (1988): An alternative two stage method via the EM-algorithm for the estimation of population pharmacokinetic parameters. J. PharmacobioDyn., 11, 335–348.

    PubMed  CAS  Google Scholar 

  15. Lindstrom M.J., Bates D.M. (1990): Nonlinear mixed effects models for repeated measures data. Biometrics, 46, 673–687.

    Article  PubMed  CAS  Google Scholar 

  16. Vonesh E.F., Carter R.L. (1992): Mixed-effects nonlinear regression for unbalanced repeated measures. Biometrics, 48, 1–17.

    Article  PubMed  CAS  Google Scholar 

  17. Mallet A. (1986): A maximum likelihood estimation method for random coefficient regression models. Biometrika, 73, 645–656.

    Article  Google Scholar 

  18. Mallet A., Mentre F., Steimer J.-L., Lokiec F. (1988): Nonparametric maximum likelihood estimation for population pharmacokinetics, with application to cyclosporine. J. Pharmacokinet. Biopharm., 16, 311–327.

    Article  PubMed  CAS  Google Scholar 

  19. Mallet A., Mentre F., Gilles J., et al. (1988): Handling covariates in population pharmacokinetics, with an application to gentamicin. Biomed. Meas. Inf. Cont., 2, 138–146.

    Google Scholar 

  20. Mentre F., Mallet A. (1992): Experiences with NPML — application to dosage individualisation of cyclosporine, gentamicin and zidovudine. In: Rowland M., Aarons L. (eds). New Strategies in Drug Development and Clinical Evaluation: the Population Approach. Luxembourg, Commission of the European Communities, pp. 75–88.

    Google Scholar 

  21. Schumitsky A. (1991): Nonparametric EM algorithms for estimating prior distributions. Appl. Math. Comput., 45, 143–157.

    Article  Google Scholar 

  22. Davidian M., Gallant A.R. (1992): Smooth nonparametric maximum likelihood estimation for population pharmacokinetics with application to quinidine. J. Pharmacokinet. Biopharm., 20, 529–556.

    Article  PubMed  CAS  Google Scholar 

  23. Racine-Poon A., Smith A.F.M. (1990): Population models. In: Berry D.A. (ed.) Statistical Methodology in the Pharmaceutical Sciences. New York, Marcel Dekker, pp. 139–162.

    Google Scholar 

  24. Racine-Poon A. (1992): A Bayesian approach to the prediction of the plasma concentration range of carbamazepine in epileptic patients. In: Rowland M., Aarons L. (eds.) New Strategies in Drug Development and Clinical Evaluation: the Population Approach. Luxembourg, Commission of the European Communities, pp. 91–98.

    Google Scholar 

  25. Sheiner L.B., Beal S.L. (1982): Bayesian individualisation of pharmacokinetics: simple implementation and comparison with non-Bayesian methods. J. Pharm. Sci., 71, 1344–1348.

    Article  PubMed  CAS  Google Scholar 

  26. Vozeh S., Steiner C. (1987): Estimates of the population pharmacokinetic parameters and performance of Bayesian feedback: a sensitivity analysis. J. Pharmacokinet. Biopharm., 15, 511–528.

    Article  PubMed  CAS  Google Scholar 

  27. Sanathanan L., Peck C., Temple R., Lieberman R., Pledger G. (1991): Randomization, pharmacokinetically-controlled dosing and titration: an integrated approach for designing clinical trials. Drug Inf. J., 25, 425–431.

    Google Scholar 

  28. Aarons L., Vozeh S., Wenk M., Weiss Ph., Follath F. (1989): Population pharmacokinetics of tobramycin. Br. J. Clin. Pharmacol., 28, 305–314.

    PubMed  CAS  Google Scholar 

  29. Aarons L., Mandeman J.W., Danhof M. (1991): A population analysis of the pharmacokinetics of midazolam in the rat. J. Pharmacokinet. Biopharm., 19, 485–496.

    Article  PubMed  CAS  Google Scholar 

  30. Sheiner L.B., Benet L.Z. (1985): Premarketing observational studies of population pharmacokinetics of new drugs. Clin. Pharmacol. Ther., 38, 481–487.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aarons, L. Sparse data analysis. Eur. J. Drug Metab. Pharmacokinet. 18, 97–100 (1993). https://doi.org/10.1007/BF03220012

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03220012

Keywords

Navigation