Skip to main content

Indexation de modèles 3D par graphe de Reeb multirésolution augmenté

Augmented multiresolution reeb graph for 3D models indexing

Résumé

Nous présentons dans cet article une méthode d’indexation de modèles 3D appliquée aux recherches par similarité de forme et d’aspect dans des bases de données d’objets 3D. L’approche repose sur la méthode d’appariement de graphes de Reeb multirésolution proposée par Hilaga et al en 2001 [1]. Dans le cadre de notre étude, nous travaillons avec des maillages de modèles 3D de géométrie plus ou moins complexes, de résolution variée, et disposant parfois de cartes de texture. L’approche originale, basée sur la topologie des objets 3D, s’est avérée insuffisante pour obtenir des appariements satisfaisants. C’est pourquoi nous proposons d’étendre les critères de cohérence topologique pour les appariements et de fusionner au graphe des informations géométriques et visuelles pour améliorer leur mise en correspondance et l’estimation de la similarité entre modèles. Ces attributs sont librement pondérables afin de s’adapter au mieux aux requêtes d’un utilisateur. Nous obtenons une représentation souple, multicritère et multirésolution que nous nommons graphe de Reeb multirésolution augmenté (aMrg). Nous comparons cette approche à un ensemble varié de méthodes d’indexation. Elle se révèle être très performante pour retrouver des objets de formes similaires ou discerner différentes classes de formes 3D.

Abstract

This article presents an indexing method for 3D mesh models applied to shape and appearance similarity retrieval in database of 3D objects. The approach relies on the multi-resolution Reeb graph matching method proposed by Hilaga et al. in 2001 [1]. In our framework, we consider 3D mesh models of various geometrical complexity, different resolution, and sometimes textured. The original approach, based on the 3D object topology, is not accurate enough to obtain satisfying matching. Therefore we propose to reinforce the topological consistency conditions of the matching and to merge within the graph geometrical and visual information to improve the matching and the calculation of the similarity between models. Besides, all these new attributes can be freely weighted to fit the user requirements for object retrieval. We obtain a flexible multiresolutional and multicriteria representation that we called augmented Multiresolution Reeb Graph (aMrg). The approach has been tested and compared with other methods. It reveals very performant for the retrieval and the classification of similar 3D shapes.

This is a preview of subscription content, access via your institution.

Bibliographie

  1. [1]

    Hilaga (M.),Shinagawa (Y.),Kohmura (T.),Kunii (T.L.), Topology Matching for Fully Automatic Similarity Estimation of 3d Shapes,Acm siggraph, Los Angeles,Ca, usa, pp.203–212, Aug. 2001.

  2. [2]

    Tangelder (J.W.H.),Veltkamp (R.C.), A Survey of Content Based 3D Shape Retrieval Methods, Shape Modeling International, Genova, Italy, pp 145–156, June 2004.

  3. [3]

    Shilane (P.),Min (P.),Kazhdan (M.),Funkhouser (T.), The Princeton Shape Benchmark, Shape Modeling International, Genova, Italy, pp 167–178, June 2004.

  4. [4]

    Goodall (S.),Lewis (P.),Martinez (K.),Sinclair (P.A.S.),Giorgini (F.),Addis (M.J.),Boniface (M.J.),Lahanier (C),Stevenson (J.),Sculpteur: Multimedia Retrieval for Museums,Image and Video Retrieval: Third International Conference,Civr 2004, pp. 638–646, Dublin, Ireland, July 2004.

  5. [5]

    http://www.3dcafe.com

  6. [6]

    Hernandez-Esteban (C),Schmitt (F.), Silhouette and Stereo Fusion for 3D Object Modeling,3DIM, 4th Int. Conf. on 3D Digital Imaging and Modeling, pp.46–53, 2003. http://www.tsi.enst.fr/3dmodels

  7. [7]

    Zaharia (T.),Preteux (F.), Indexation de maillages 3D par descripteurs de forme,rfia, pp. 48–57, Angers, France, Jan. 2002.

  8. [8]

    Horn (B.K.P.), Extended Gaussian Image,Proc. of the IEEE,72, pp. 1671–1686, 1984.

    Article  Google Scholar 

  9. [9]

    Kang (S.B.), Ikeuchi (K.) The complexEgi: a new representation for 3D pose determination,IEEE Trans on PAMI,16, No.3, pp. 249–258, Mar. 1994.

    Article  Google Scholar 

  10. [10]

    Paquet (E.),Rioux (M.) Nefertiti: a Query by Content Software for Three-Dimensional Models Databases Management,3D Digital Imaging and Modeling, Proc. Int. Conf. on Recent Advances, pp. 345–352, 1997.

  11. [11]

    Osada (R.), Funkhouser (T.), Chazelle (B.), Dobkin (D.). Shape Distributions,Acm Trans, on Graphics, 21 (4), pp. 807–832, Oct. 2002.

    Article  Google Scholar 

  12. [12]

    Tangelder (J.W.H.),Veltkamp (R.C.) Polyhedral Model Comparison Using Weighted Point Sets,Shape Modeling International, Seoul, Korea, pp. 119–129, May 2003.

  13. [13]

    Vranic (D.V.),Saupe (D.),Richter (J.), Tools for 3D-object retrieval: Karhunen-Loeve Transform and spherical harmonics,IEEE Workshop Multimedia Signal Processing, Cannes, France, pp. 293–298, Oct. 2001.

  14. [14]

    Kazhdan (K.),Funkhouser (T.), Harmonic 3D Shape Matching,Siggraph Technical Sketches, p.191, July 2002.

  15. [15]

    Goldak (J.A.), Yu (X.), Knight (A.), Dong (L.). Constructing discrete medial axis of 3D objects,International Journal of Computational Geometry and Applications, 1 (3), pp.327–339, 2001.

    MathSciNet  Google Scholar 

  16. [16]

    Leymarie (F),Kimia (B.), The Shock Scaffold for Representing 3D Shape,Visual Form, Springer-Verlag, Lecture Notes in Computer Science, No. 2059, pp. 216–229, 2001.

  17. [17]

    Verroust (A.), Lazarus (F.), Extracting Skeletal Curves from 3D Scattered Data,The Visual Computer, Springer, 16 (1), pp.15–25, 2000.

    MATH  Article  Google Scholar 

  18. [18]

    Sundar (H.),Silver (D.),Gagvani (N.),Dickinson (S.), Skeleton Based Shape Matching and Retrieval,Shape Modeling International, Seoul, Korea, pp. 130–142, May 2003.

  19. [19]

    Biasotti (S.),Marini (S.),Mortara (M.),Patane (G.),Spagnuolo (M.),Falcidieno (B.), 3D Shape Matching through Topological Structures,11th Discrete Geometry for Computer Imagery conference, Springer-Verlag, Lecture Notes in Computer Science, No. 2886, 2003.

  20. [20]

    Shinagawa (Y.), Kunii (T.L.), Kergosien (Y.L.), Surface Coding Based on Morse Theory,IEEE Computer Graphics and Applications,11, No. 5, pp. 66–78, Sept. 1991.

    Article  Google Scholar 

  21. [21]

    Milnor (J.W.), Morse theory,Princeton University Press, Princeton,Nj, 1963.

    MATH  Google Scholar 

  22. [22]

    Reeb (G.), Sur les points singuliers d’une forme de Pfaff complètement intégrable ou d’une fonction numérique [On the Singular Points of a Completely Intégrable Pfaff Form or of a Numerical Function],Comptes Rendus Acad. Sciences Paris,222, pp. 847–849, 1946.

    MathSciNet  MATH  Google Scholar 

  23. [23]

    Foulds (L.R.), Graph Theory Applications,Springer Verlag, New York, 1992.

    MATH  Book  Google Scholar 

  24. [24]

    Koenderink (J.), Solid Shape, TheMit Press, 1990.

  25. [25]

    Zhang (C), Chen (T.), Efficient Feature Extraction for 2D/3D Objects in Mesh Representation,Icip, Thessaloniki, Greece, pp.935–938, Oct. 2001.

    Google Scholar 

  26. [26]

    Barros (J.), French (J.), Martin (W.), Kelly (P.), Cannon (M.), Using the triangle inequality to reduce the number of comparisons required for similarity-based retrieval.Proc. of spie,2670, pp. 392–403, 1996.

    Article  Google Scholar 

  27. [27]

    Del Bimbo (A.), Visual Information Retrieval,Morgan Kaufmann Publishers, Inc, 2001.

  28. [28]

    Rubner (Y),Tomasi (C),Guibas (L. J.), A Metric for Distributions with Applications to Image Databases,Proceedings of the 1998 IEEE International Conference on Computer Vision, Bombay, India, pp. 59–66, January 1998.

  29. [29]

    Goodall (S.),Lewis (P.),Martinez (K.), 3D shape descriptors and distance metrics for content-based artefact retrieval,Proceedings of Storage and Retrieval Methods and Applications for Multimedia 2005 5682, pages pp. 87–97, San Jose, California, USA.Lienhart (R. W.),Babaguchi (N.) andChang (E. Y), Eds.

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tung, T., Schmitt, F. Indexation de modèles 3D par graphe de Reeb multirésolution augmenté. Ann. Télécommun. 60, 1309–1336 (2005). https://doi.org/10.1007/BF03219851

Download citation

Mots clés

  • Modèle tridimensionnel
  • Indexation
  • Analyse multirésolution
  • Recherche information
  • Maillage
  • Base donnée
  • Forme géométrique
  • Graphe
  • Similitude

Key words

  • Three dimensional model
  • Indexing
  • Multiresolution analysis
  • Information retrieval
  • Grid pattern
  • Database
  • Geometrical shape
  • Graph
  • Similitude