Skip to main content
Log in

Preparation of dinuclear, constrained geometry zirconium complexes with polymethylene bridges and an investigation of their polymerization behavior

  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

We have prepared the polymethylene-bridged, dinuclear, half-sandwich constrained geometry catalysts (CGC) [Zr(η51-C9H5SiMe2NCMe2NCMe3)]2 [(CH2)n] [n=6 (9),n=12 (10)] by treating 2 equivalents of ZrCl4 with the corresponding tetralithium salts of the ligands in toluene.1H and13C NMR spectra of the synthesized complexes provide firm evidence for the anticipated dinuclear structure. In1H NMR spectra, two singlets representing the methyl group protons bonded at the Si atom of the CGC are present at 0.88 and 0.64 ppm, which are considerably downfield positions relative to the shifts of 0.02 and 0.05 ppm of the corresponding ligands. To investigate the catalytic behavior of the prepared dinuclear catalysts, we conducted copolymerizations of ethylene and styrene in the presence of MMAO. The prime observation is that the two dinuclear CGCs9 and10 are not efficient for copolymerization, which definitely distinguishes them from the corresponding titanium-based dinuclear CGC. These species are active catalysts, however, for ethylene homopolymerization; the activity of catalyst10, which contains a 12-methylene bridge, is larger than that of9 (6-methylene bridge), which indicates that the presence of the longer bridge between the two active sites contributes more effectively to facilitate the polymerization activity of the dinuclear CGC. The activities increase as the polymerization temperature increases from 40 to 70 °C. On the other hand, the molecular weights of the polyethylenes are reduced when the polymerization temperature is increased. We observe that dinuclear metallocenes having different-length bridges give different polymerization results, which reconfirms the significant role that the nature of the bridging ligand has in controlling the polymerization properties of dinuclear catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. N. Pedeutour, K. Radhakrishnan, H. Cramail, and A. Deffieux,Macromolecular Rapid Commun. 22, 1095 (2001).

    Article  CAS  Google Scholar 

  2. J. A. Gladysz, Ed.;Chem. Rev.,100 (special issue on “Frontier in Metal Catalyzed Polymerization”)(2000).

  3. T. J. Marks and J. C. Stevens, Eds.,Topics Catal.,15 (1999).

  4. G. J. P. Britovsek, V. C. Gibson, and D. F. Wass,Angew Chem. Int. Ed.,38, 428 (1999).

    Article  CAS  Google Scholar 

  5. S. Mecking,Coord. Chem. Rev.,203, 325 (2000).

    Article  CAS  Google Scholar 

  6. A. L. McKnight and R. M. Waymouth,Chem. Rev.,98, 2587 (1998).

    Article  CAS  Google Scholar 

  7. J. C. Stevens, F. J. Timmers, D. R. Wilson, G. F. Schmidt, P. N. Nickias, R. K. Rosen, G. W. McKnight, and S. Lai, Eur. Pat. Appl. 0416815A2 (1991).

  8. J. C. Stevens and D. R. Neithamer,Eur. Pat. Appl. 0418044A2 (1991).

  9. F. G. Sernetz, R. Mülhaupt, F. Amor, T. Eberle, and J. Okuda,J. Polym. Sci., Part A: Polym. Chem.,35, 1571 (1997).

    Article  CAS  Google Scholar 

  10. K. Nomura, H. Okumura, T. Komatsu, and N. Naga,Macromolecules 35, 5388 (2002).

    Article  CAS  Google Scholar 

  11. K. Nomura, T. Komatsu, and Y. Imanishi,Macromolecules,33, 8122 (2000).

    Article  CAS  Google Scholar 

  12. L. Caporaso, L. Izzo, I. Sisti, and L. Oliva,Macromolecules,35, 4866 (2002).

    Article  CAS  Google Scholar 

  13. A. L. McKnight and R. M. Waymouth,Macromolecules,32, 2816 (1999).

    Article  CAS  Google Scholar 

  14. F. Amor and J. Okuda, J. Organomet.Chem.,520, 245 (1996).

    CAS  Google Scholar 

  15. L. Li, M. V. Metz, H. Li, M. C. Chen, T. J. Marks, L. Liable-Sands, and A. L. Rheingold,J. Am. Chem. Soc.,124, 12725 (2002).

    Article  CAS  Google Scholar 

  16. D. H. Lee and S. K. Noh,Korea Polym. J.,9, 71 (2001).

    CAS  Google Scholar 

  17. W. Spaleck, F. Kuber, B. Bachmann, C. Fritz, and A. Winter,J. Mol. Cat. A: Chem.,128, 278 (1998).

    Article  Google Scholar 

  18. K. Soga, H. T. Ban, and T. Uozumi,J. Mol. Cat. A: Chem.,128, 273 (1998).

    Article  CAS  Google Scholar 

  19. S. K. Noh, S. Kim, J. Kim, D. H. Lee, K. B. Yoon, H. B. Lee, S. W. Lee, and W. S. Huh,J. Polym. Sci., Part A: Polym. Chem.,35, 3717 (1997).

    Article  CAS  Google Scholar 

  20. S. K. Noh, J. Kim, J. Jung, C. S. Ra, D. H. Lee, H. B. Lee, S. W. Lee, and W. S. Huh,J. Organomet. Chem.,580, 90 (1999).

    Article  CAS  Google Scholar 

  21. J. Jung, S. K. Noh, D. H. Lee, S. K. Part, and H. J. Kim,J. Organomet. Chem.,595,147 (2000).

    Article  CAS  Google Scholar 

  22. S. K. Noh, J. Lee, and D. H. Lee,J. Organomet. Chem.,667, 53 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noh, S.K., Jiang, W.L. & Lee, Dh. Preparation of dinuclear, constrained geometry zirconium complexes with polymethylene bridges and an investigation of their polymerization behavior. Macromol. Res. 12, 100–106 (2004). https://doi.org/10.1007/BF03219001

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03219001

Keywords

Navigation