Advertisement

Macromolecular Research

, Volume 17, Issue 8, pp 568–574 | Cite as

Sintering and consolidation of silver nanoparticles printed on polyimide substrate films

  • Sang Hwa Yoon
  • Jun Ho Lee
  • Pyoung Chan Lee
  • Jae Do NamEmail author
  • Hyun-Chul Jung
  • Yong Soo Oh
  • Tae Sung Kim
  • Young kwan Lee
Article

Abstract

We investigated the sintering and consolidation phenomena of silver nanoparticles under various thermal treatment conditions when they were patterned by a contact printing technique on polyimide substrate films. The sintering of metastable silver nanoparticles commenced at 180 °C, where the point necks were formed at the contact points of the nanoparticles to reduce the overall surface area and the overall surface energy. As the temperature was increased up to 250 °C, silver atoms diffused from the grain boundaries at the intersections and continued to deposit on the interior surface of the pores, thereby filling up the remaining space. When the consolidation temperature exceeded 270 °C, the capillary force between the spherical silver particles and polyimide flat surface induced the permanent deformation of the polyimide films, leaving crater-shaped indentation marks. The bonding force between the patterned silver metal and polyimide substrate was greatly increased by the heat treatment temperature and the mechanical interlocking by the metal particle indentation.

Keywords

silver nanoparticles sintering polyimide capillary force 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    B. J. D. Gans, P. C. Duineveld, and U. S. Schubert,Adv. Mater.,16, 203 (2004).CrossRefGoogle Scholar
  2. (2).
    R. F. Service,Science,304, 675 (2004).CrossRefGoogle Scholar
  3. (3).
    C. W. Sele, T. V. Werne, R. H. Friend, and H. Sirringhaus,Adv. Mater.,17, 997 (2005).CrossRefGoogle Scholar
  4. (4).
    M. S. Park, T. H. Lee, Y. M. Jeon, J. G. Kim, and M. S. Gong,Macromol. Res.,16, 308 (2008).CrossRefGoogle Scholar
  5. (5).
    J. K. Kim and H. Ahn,Macromol. Res.,16, 163 (2008).Google Scholar
  6. (6).
    G. P. Kim, Y. S. Jung, S. B. Yoon, D. W. Kim, and S. H. Baeck,Macromol. Res.,15, 693 (2007).CrossRefGoogle Scholar
  7. (7).
    S. Magdassi, A. Bassa, Y. Vinetsky, and A. Kamyshny,Chem. Mater.,15, 2208 (2003).CrossRefGoogle Scholar
  8. (8).
    A. Kamyshny, M. Ben-Moshe, S. Aviezer, and S. Magdassi,Macromol. Rapid Commun.,26, 281 (2005).CrossRefGoogle Scholar
  9. (9).
    Y. Li, Y. Wu, and B. S. Ong,J. Am. Chem. Soc.,127, 3266 (2005).CrossRefGoogle Scholar
  10. (10).
    D. Huang, F. Liao, S. Molesa, D. Redinger, and V. Subramanian,J. Electrochem. Soc.,150, 412 (2003).CrossRefGoogle Scholar
  11. (11).
    M. C. Daniel and D. Austruc,Chem. Rev.,104, 293 (2004).CrossRefGoogle Scholar
  12. (12).
    P. V. Kamat,J. Phys. Chem. B,106, 7729 (2002).CrossRefGoogle Scholar
  13. (13).
    G. Chumanov, K. Sokolov, B. Gregory, and T. M. J. Cotton,Phys. Chem.,99, 9466 (1995).CrossRefGoogle Scholar
  14. (14).
    K. C. Grabar, R. G. Freeman, M. B. Hommer, and M. J. Natan,Anal.Chem.,67, 735 (1995).CrossRefGoogle Scholar
  15. (15).
    G. Chumanov, K. Sokolov, and T. M. J. Cotton,Phys. Chem.,100, 5166 (1996).CrossRefGoogle Scholar
  16. (16).
    S. Malynych, I. Luzinov, and G. Chumanov,Phys. Chem. B,106, 1280 (2002).CrossRefGoogle Scholar
  17. (17).
    L. Xu, J. Liao, L. Huang, D. Ou, Z. Guo, H. Zhang, and C. Ge,Thin Solid Films,434, 121 (2003).CrossRefGoogle Scholar
  18. (18).
    Y. Masuda, T. Koumura, T. Okawa, and K. Koumoto,J. Colloid Interf. Sci.,263, 190 (2003).CrossRefGoogle Scholar
  19. (19).
    K. Bandyopadhyay, V. Patil, K. Vijayamohanan, and M. Sastry,Langmuir,13, 5244 (1997).CrossRefGoogle Scholar
  20. (20).
    Z. Zhong, B. Gates, Y. Xia, and D. Qin,Langmuir,16, 10369 (2000).CrossRefGoogle Scholar
  21. (21).
    M. K. Ghosh and K. L. Mittal,Polyimides: Fundamentals and Applications, Marcel Dekker, New York, 1996, pp 121.Google Scholar
  22. (22).
    D. Wilson, H. D. Stenzenberger, and P. M. Hergenrother,Polyimides, Chapman and Hall, New York, 1990, pp 370.Google Scholar
  23. (23).
    Available from <http://dupont.com/kapton/general/H-38492–2.pdf>.Google Scholar
  24. (24).
    D. Y. Shih, N. Klymko, R. Flitsch, J. Paraszczak, and S. Nunes,J. Vac. Sci. Technol. A,9, 2704 (1991).CrossRefGoogle Scholar
  25. (25).
    D. L. Pappas and J. J. Cuomo,J. Vac. Sci. Technol. A,9, 2704 (1991).CrossRefGoogle Scholar
  26. (26).
    T. Strunskus, M. Grunze, G. Kochendoerfer, and C. Woll,Langmuir,12, 2712 (1996).CrossRefGoogle Scholar
  27. (27).
    K. W. Lee, S. P. Kowalczyk, and J. M. Shaw,Macromolecules,23, 2097 (1990).CrossRefGoogle Scholar
  28. (28).
    K. W. Lee, S. P. Kowalczyk, and J. M. Shaw,Langmuir,7, 2450 (1991).CrossRefGoogle Scholar
  29. (29).
    K. W. Lee and A. Viehbeck,IBM J. Res. Dev.,38, 457 (1994).CrossRefGoogle Scholar
  30. (30).
    I. Ghosh, J. Konar, and A. K. Bhowmick,J. Adhes. Sci. Technol.,11, 877 (1997).CrossRefGoogle Scholar
  31. (31).
    R. R. Thomas, S. L. Buchwalter, L. P. Buchwalter, and T. H. Chao,Macromolecules,25, 4559 (1992).CrossRefGoogle Scholar
  32. (32).
    G. Rozovskis, J. Vinkevicius, and J. Jaciauskiene,J. Adhes. Sci. Technol.,10, 399 (1996).CrossRefGoogle Scholar
  33. (33).
    N. Inagaki, S. Tasaka, H. Ohmori, and S. Mibu,J. Adhes. Sci. Technol.,10, 243 (1996).CrossRefGoogle Scholar
  34. (34).
    H. K. Yun, K. Cho, J. K. Kim, C. E. Park, S. M. Sim, S. Y. Oh, and J. M. Park,J. Adhes. Sci. Technol.,11, 95 (1997).CrossRefGoogle Scholar
  35. (35).
    M. Strobel, C. Lyons, and K. L. Mittal,Plasma Surface Modification of Polymers, VSP Publications, Utrecht, 1994, pp 201.Google Scholar
  36. (36).
    H. Hiraoka and S. Lazare,Appl. Surf. Sci.,46, 264 (1990).CrossRefGoogle Scholar
  37. (37).
    H. Niino and A. Yabe,Appl. Surf. Sci.,69, 1 (1996).CrossRefGoogle Scholar
  38. (38).
    A. Kumar, H. A. Biebuyck, and G. M. Whitesides,Langmuir,19, 1498 (1994).CrossRefGoogle Scholar
  39. (39).
    P. Buffat and J. P. Borel,Phys. Rev. A,13, 2287 (1975).CrossRefGoogle Scholar
  40. (40).
    W. Thomson,Philos. Mag.,42, 448 (1871).Google Scholar
  41. (41).
    M. N. Rahaman,Ceramic processing and sintering, Dekker, New York, 1969, p. 389.Google Scholar
  42. (42).
    P. Zeng, S. Zajac, and P. C. Clapp,Mater. Sci. Eng. A,252, 301 (1998).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer 2009

Authors and Affiliations

  • Sang Hwa Yoon
    • 1
  • Jun Ho Lee
    • 1
  • Pyoung Chan Lee
    • 1
  • Jae Do Nam
    • 1
    Email author
  • Hyun-Chul Jung
    • 2
  • Yong Soo Oh
    • 2
  • Tae Sung Kim
    • 3
  • Young kwan Lee
    • 4
  1. 1.Department of Polymer Science and EngineeringSAINT, Sungkyunkwan UniversitySuwonKorea
  2. 2.Central R&D InstituteSamsung Electro-Mechanics Co., Ltd.SuwonKorea
  3. 3.School of Mechanical EngineeringSungkyunkwan UniversitySuwonKorea
  4. 4.Department of Polymer Chemical EngineeringSungkyunkwan UniversitySuwonKorea

Personalised recommendations