Skip to main content

Effect of composition and synthetic route on the microstructure of biodegradable diblock copolymer, poly(ε-caprolactone-co-L-lactide)-b-poly(ethylene glycol)

Abstract

Biodegradable poly(ε-caprolactone-co-L-lactide)-b-poly(ethylene glycol) (PCLA-b-PEG) copolymers were synthesized via solution polymerization by varying the feed composition of ε-caprolactone (ε-CL) and L-lactide (LLA) (ε-CL: LLA=10∶0, 7∶3, 5∶5, 3∶7, 0∶10). The feed ratio based on weight is in accordance with the copolymer composition except for the case of ε-CL: LLA=3:7 (C3L7), which was verified by1H-NMR. Two different approaches were used for the exceptional case, which is an extension of the reaction time or the sequential introduction of the monomer. A copolymer composition of ε-CL: LLA=3:7 could be obtained in either case. The chemical microstructure of PCLA-b-PEG was determined using the13C-NMR spectra and the effect of the sequential structure on the thermal properties and crystallinity were examined. Despite the same composition ratio of the copolymer, the microstructure can differ according to the reaction conditions.

This is a preview of subscription content, access via your institution.

References

  1. R. Langer,Nature(Supp),392, 5 (1998).

    CAS  Google Scholar 

  2. S. Dumitriu,Polymeric Biomaterials, 2nd edition, Marcel Dekker, New York, 2001, Ch. 4.

    Book  Google Scholar 

  3. A. Göpferich,Biomaterials,17, 103 (1996).

    Article  Google Scholar 

  4. K. E. Uhrich, S. M. Cannizarro, R. S. Langer, and K. M. Shakesheff,Chem. Rev.,99, 3181 (1999).

    Article  CAS  Google Scholar 

  5. J. E. Bergsma, F. R. Rozema, R. R. M. Bos, G. Boering, W. C. de Bruijn, and A. J. Pennings,Biomaterials,16, 267 (1995).

    Article  CAS  Google Scholar 

  6. C. H. Kim, K. Y. Cho, E. J. Choi, and J. K. Park,J. Appl. Polym. Sci.,77, 226 (2000).

    Article  CAS  Google Scholar 

  7. N. S. Choi, C. H. Kim, K. Y. Cho, and J. K. Park,J. Appl. Polym. Sci.,86, 1892 (2002).

    Article  CAS  Google Scholar 

  8. C. G. Pitt, F. I. Chasalow, Y. M. Hibionada, D. M. Klimas, and A. Schindler,J. Appl. Polym. Sci.,26, 3779 (1981).

    Article  CAS  Google Scholar 

  9. M. Yasin and B. J. Tighe,Biomaterials,13, 9 (1992).

    Article  CAS  Google Scholar 

  10. K. Y. Cho, C. H. Kim, J. W. Lee, and J. K. Park,Macromol. Rapid Commun.,20, 598 (1999).

    Article  CAS  Google Scholar 

  11. K. Y. Cho and J. K. Park,Polym. Bull.,57, 849 (2006).

    Article  CAS  Google Scholar 

  12. K. J. Zhu, X. Z. Lin, and S. L. Yang,J. Appl. Polym. Sci.,39, 1 (1990).

    Article  CAS  Google Scholar 

  13. K. S. Kim, S. Chung, I. J. Chin, M. N. Kim, and J. S. Yoon,J. Appl. Polym. Sci.,72, 341 (1999).

    Article  CAS  Google Scholar 

  14. K. Y. Cho, S. H. Choi, C. H. Kim, Y. S. Nam, T. G. Park, and J. K. Park,J. Control. Release,76, 275 (2001).

    Article  CAS  Google Scholar 

  15. A. Göpferich, S. J. Peter, A. Lucke, L. Lu, and A. G. Mikos,J. Biomed. Mater. Res.,46, 390 (1999).

    Article  Google Scholar 

  16. G. S. Kwon and K. Kataoka,Adv. Drug Deliver. Rev.,16, 295 (1995).

    Article  CAS  Google Scholar 

  17. M. Iijima, Y. Nagasaki, T. Okada, M. Kato, and K. Kataoka,Macromolecules,32, 1140 (1999).

    Article  CAS  Google Scholar 

  18. R. Gref, Y. Minamitake, M. T. Peracchia, V. Trubetskov, V. Torchilin, and R. Langer,Science,263, 1600 (1994).

    Article  CAS  Google Scholar 

  19. B. Jeong, Y. H. Bae, D. S. Lee, and S. W. Kim,Nature,388, 860 (1997).

    Article  CAS  Google Scholar 

  20. S. J. Im, Y. M. Choi, E. Subramanyam, and K. M. Huh,Macromol. Res.,15, 363 (2007).

    Article  CAS  Google Scholar 

  21. Y. J. Min, K. Y. Cho, and J. K. Park,Proceedings of 29th Annual Meeting of the Controlled Release Society, Seoul, Korea, July 20–25, 2002, p1144.

    Google Scholar 

  22. H. Cho, D. Chung, and J. An,Biomaterials,25, 3733 (2004).

    Article  CAS  Google Scholar 

  23. Y. Zhang, C. Wang, W. Yang, B. Shi, and S. Fu,Colloid Polym. Sci.,283, 1246 (2005).

    Article  CAS  Google Scholar 

  24. R. R. Pal and D. S. Lee,Macromol. Res.,13, 373 (2005).

    Article  CAS  Google Scholar 

  25. W. S. Shim, J. H. Kim, H. Park, K. Kim, I. C. Kwon, and D. S. Lee,Biomaterials,27, 5178 (2006).

    Article  CAS  Google Scholar 

  26. W. P. Ye, F. S. Du, W. H. Jin, J. Y. Yang, and Y. Xu,React. Funct. Polym.,32, 161 (1997).

    Article  CAS  Google Scholar 

  27. M. Malin, M. Hiljanen-Vainio, T. Karjalainen, and J. Seppälä,J. Appl. Polym. Sci.,59, 1289 (1996).

    Article  CAS  Google Scholar 

  28. J. Mohammadi-Rovshandeh, S. M. F. Farnia, and M. N. Sarbolouki,J. Appl. Polym. Sci.,83, 2072 (2002).

    Article  CAS  Google Scholar 

  29. M. S. Huang, S. Li, J. Coudane, and M. Vert,Macromol. Chem. Phys.,204, 1994 (2003).

    Article  CAS  Google Scholar 

  30. D. W. Grijpma and A. J. Pennings,Polym. Bull.,25, 335 (1991).

    Article  CAS  Google Scholar 

  31. J. Kasperczyk and M. Bero,Makromol. Chem.,192, 1777 (1991).

    Article  CAS  Google Scholar 

  32. E. J. Choi, J. K. Park, and H. N. Chang,J. Polym. Sci. Polym. Phys.,32, 2481 (1994).

    Article  CAS  Google Scholar 

  33. T. Fujiwara, M. Miyamoto, Y. Kimura, and S. Sakurai,Polymer,42, 1515 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuk Young Cho.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Min, Y., Lee, S., Park, JK. et al. Effect of composition and synthetic route on the microstructure of biodegradable diblock copolymer, poly(ε-caprolactone-co-L-lactide)-b-poly(ethylene glycol). Macromol. Res. 16, 231–237 (2008). https://doi.org/10.1007/BF03218858

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03218858

Keywords

  • biodegradable
  • copolymer
  • microstructure
  • PEG
  • sequence distribution