Macromolecular Research

, Volume 16, Issue 3, pp 231–237 | Cite as

Effect of composition and synthetic route on the microstructure of biodegradable diblock copolymer, poly(ε-caprolactone-co-L-lactide)-b-poly(ethylene glycol)

  • Younjin Min
  • Seongnam Lee
  • Jung-Ki Park
  • Kuk Young Cho
  • Shi-Joon Sung
Article

Abstract

Biodegradable poly(ε-caprolactone-co-L-lactide)-b-poly(ethylene glycol) (PCLA-b-PEG) copolymers were synthesized via solution polymerization by varying the feed composition of ε-caprolactone (ε-CL) and L-lactide (LLA) (ε-CL: LLA=10∶0, 7∶3, 5∶5, 3∶7, 0∶10). The feed ratio based on weight is in accordance with the copolymer composition except for the case of ε-CL: LLA=3:7 (C3L7), which was verified by1H-NMR. Two different approaches were used for the exceptional case, which is an extension of the reaction time or the sequential introduction of the monomer. A copolymer composition of ε-CL: LLA=3:7 could be obtained in either case. The chemical microstructure of PCLA-b-PEG was determined using the13C-NMR spectra and the effect of the sequential structure on the thermal properties and crystallinity were examined. Despite the same composition ratio of the copolymer, the microstructure can differ according to the reaction conditions.

Keywords

biodegradable copolymer microstructure PEG sequence distribution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    R. Langer,Nature(Supp),392, 5 (1998).Google Scholar
  2. (2).
    S. Dumitriu,Polymeric Biomaterials, 2nd edition, Marcel Dekker, New York, 2001, Ch. 4.CrossRefGoogle Scholar
  3. (3).
    A. Göpferich,Biomaterials,17, 103 (1996).CrossRefGoogle Scholar
  4. (4).
    K. E. Uhrich, S. M. Cannizarro, R. S. Langer, and K. M. Shakesheff,Chem. Rev.,99, 3181 (1999).CrossRefGoogle Scholar
  5. (5).
    J. E. Bergsma, F. R. Rozema, R. R. M. Bos, G. Boering, W. C. de Bruijn, and A. J. Pennings,Biomaterials,16, 267 (1995).CrossRefGoogle Scholar
  6. (6).
    C. H. Kim, K. Y. Cho, E. J. Choi, and J. K. Park,J. Appl. Polym. Sci.,77, 226 (2000).CrossRefGoogle Scholar
  7. (7).
    N. S. Choi, C. H. Kim, K. Y. Cho, and J. K. Park,J. Appl. Polym. Sci.,86, 1892 (2002).CrossRefGoogle Scholar
  8. (8).
    C. G. Pitt, F. I. Chasalow, Y. M. Hibionada, D. M. Klimas, and A. Schindler,J. Appl. Polym. Sci.,26, 3779 (1981).CrossRefGoogle Scholar
  9. (9).
    M. Yasin and B. J. Tighe,Biomaterials,13, 9 (1992).CrossRefGoogle Scholar
  10. (10).
    K. Y. Cho, C. H. Kim, J. W. Lee, and J. K. Park,Macromol. Rapid Commun.,20, 598 (1999).CrossRefGoogle Scholar
  11. (11).
    K. Y. Cho and J. K. Park,Polym. Bull.,57, 849 (2006).CrossRefGoogle Scholar
  12. (12).
    K. J. Zhu, X. Z. Lin, and S. L. Yang,J. Appl. Polym. Sci.,39, 1 (1990).CrossRefGoogle Scholar
  13. (13).
    K. S. Kim, S. Chung, I. J. Chin, M. N. Kim, and J. S. Yoon,J. Appl. Polym. Sci.,72, 341 (1999).CrossRefGoogle Scholar
  14. (14).
    K. Y. Cho, S. H. Choi, C. H. Kim, Y. S. Nam, T. G. Park, and J. K. Park,J. Control. Release,76, 275 (2001).CrossRefGoogle Scholar
  15. (15).
    A. Göpferich, S. J. Peter, A. Lucke, L. Lu, and A. G. Mikos,J. Biomed. Mater. Res.,46, 390 (1999).CrossRefGoogle Scholar
  16. (16).
    G. S. Kwon and K. Kataoka,Adv. Drug Deliver. Rev.,16, 295 (1995).CrossRefGoogle Scholar
  17. (17).
    M. Iijima, Y. Nagasaki, T. Okada, M. Kato, and K. Kataoka,Macromolecules,32, 1140 (1999).CrossRefGoogle Scholar
  18. (18).
    R. Gref, Y. Minamitake, M. T. Peracchia, V. Trubetskov, V. Torchilin, and R. Langer,Science,263, 1600 (1994).CrossRefGoogle Scholar
  19. (19).
    B. Jeong, Y. H. Bae, D. S. Lee, and S. W. Kim,Nature,388, 860 (1997).CrossRefGoogle Scholar
  20. (20).
    S. J. Im, Y. M. Choi, E. Subramanyam, and K. M. Huh,Macromol. Res.,15, 363 (2007).CrossRefGoogle Scholar
  21. (21).
    Y. J. Min, K. Y. Cho, and J. K. Park,Proceedings of 29th Annual Meeting of the Controlled Release Society, Seoul, Korea, July 20–25, 2002, p1144.Google Scholar
  22. (22).
    H. Cho, D. Chung, and J. An,Biomaterials,25, 3733 (2004).CrossRefGoogle Scholar
  23. (23).
    Y. Zhang, C. Wang, W. Yang, B. Shi, and S. Fu,Colloid Polym. Sci.,283, 1246 (2005).CrossRefGoogle Scholar
  24. (24).
    R. R. Pal and D. S. Lee,Macromol. Res.,13, 373 (2005).CrossRefGoogle Scholar
  25. (25).
    W. S. Shim, J. H. Kim, H. Park, K. Kim, I. C. Kwon, and D. S. Lee,Biomaterials,27, 5178 (2006).CrossRefGoogle Scholar
  26. (26).
    W. P. Ye, F. S. Du, W. H. Jin, J. Y. Yang, and Y. Xu,React. Funct. Polym.,32, 161 (1997).CrossRefGoogle Scholar
  27. (27).
    M. Malin, M. Hiljanen-Vainio, T. Karjalainen, and J. Seppälä,J. Appl. Polym. Sci.,59, 1289 (1996).CrossRefGoogle Scholar
  28. (28).
    J. Mohammadi-Rovshandeh, S. M. F. Farnia, and M. N. Sarbolouki,J. Appl. Polym. Sci.,83, 2072 (2002).CrossRefGoogle Scholar
  29. (29).
    M. S. Huang, S. Li, J. Coudane, and M. Vert,Macromol. Chem. Phys.,204, 1994 (2003).CrossRefGoogle Scholar
  30. (30).
    D. W. Grijpma and A. J. Pennings,Polym. Bull.,25, 335 (1991).CrossRefGoogle Scholar
  31. (31).
    J. Kasperczyk and M. Bero,Makromol. Chem.,192, 1777 (1991).CrossRefGoogle Scholar
  32. (32).
    E. J. Choi, J. K. Park, and H. N. Chang,J. Polym. Sci. Polym. Phys.,32, 2481 (1994).CrossRefGoogle Scholar
  33. (33).
    T. Fujiwara, M. Miyamoto, Y. Kimura, and S. Sakurai,Polymer,42, 1515 (2001).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer 2008

Authors and Affiliations

  • Younjin Min
    • 1
  • Seongnam Lee
    • 1
  • Jung-Ki Park
    • 1
  • Kuk Young Cho
    • 2
  • Shi-Joon Sung
    • 3
  1. 1.Department of Chemical & Biomolecular EngineeringKorea Advanced Institute of Science and TechnologyDaejeonKorea
  2. 2.Division of Advanced Materials EngineeringKongju National UniversityChungnamKorea
  3. 3.Display and Nano Devices LaboratoryDaegu Gyeongbuk Institute of Science and TechnologyDaeguKorea

Personalised recommendations