Skip to main content
Log in

Multiwalled carbon nanotubes functionalized with PS via emulsion polymerization

  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

This study demonstrated the in-situ functionalization with polymers of multi-walled carbon nanotubes (MWNTs) via emulsion polymerization. Polystyrene-functionalized MWNTs were prepared in an aqueous solution containing styrene monomer, non-ionic surfactant and a cationic coupling agent ([2-(methacryloyloxy)ethyl]trimethylammonium chloride (MATMAC)). This process produced an interesting morphology in which the MWNTs, consisting of bead-string shapes or MWNTs embedded in the beads, when polymer beads were sufficiently large, produced nanohybrid material. This morphology was attributed to the interaction between the cationic coupling agent and the nanotube surface which induced polymerization within the hemimicellar or hemicylindrical structures of surfactant micelles on the surface of the nanotubes. In a solution containing MATMAC alone without surfactant, carbon nanotubes (CNTs) were not well-dispersed, and in a solution containing only surfactant without MATMAC, polymeric beads were synthesized in isolation from CNTs and continued to exist separately. The incorporation of MATMAC and surfactant together enabled large amounts of CNTs (× 0.05 wt%) to be well-dispersed in water and very effectively encapsulated by polymer chains. This method could be applied to other well-dispersed CNT solutions containing amphiphilic molecules, regardless of the type (i.e., anionic, cationic or nonionic). In this way, the solubility and dispersion of nanotubes could be increased in a solvent or polymer matrix. By enhancing the interfacial adhesion, this method might also contribute to the improved dispersion of nanotubes in a polymer matrix and thus the creation of superior polymer nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. E. Hill, Y. Lin, A. M. Rao, L. F. Allard, and Y.-P. Sun,Macromolecules,35, 9466 (2002).

    Article  CAS  Google Scholar 

  2. B. Zhao, H. Hu, A. Yu, D. Perea, and R. C. Haddon,J. Am. Chem. Soc.,127, 8197 (2005).

    Article  CAS  Google Scholar 

  3. Y. Sabba and E. L. Thomas,Macromolecules,37, 4815 (2004).

    Article  CAS  Google Scholar 

  4. S. Banerjee, T. Hemraj-Benny, and S. S. Wong,Adv. Mater.,17, 17 (2005).

    Article  CAS  Google Scholar 

  5. H. Peng, L. B. Alemany, J. L. Margrave, and V. N. Khabashesku,J. Am. Chem. Soc.,125, 15174 (2003).

    Article  CAS  Google Scholar 

  6. N. Chopra, M. Majumder, and B. J. Hinds,Adv. Funct. Mater.,15, 858 (2005).

    Article  CAS  Google Scholar 

  7. X. Zhang, T. V. Sreekumar, T. Liu, and S. Kumar,J. Phys. Chem. B,108, 16435 (2004).

    Article  CAS  Google Scholar 

  8. H. Hu, M. E. B. Zhao, M. E. Itkis, and R. C. Haddon,J. Phys. Chem. B,107, 13838 (2003).

    Article  CAS  Google Scholar 

  9. J. Gao, M. E. Itkis, A. Yu, E. Bekyarova, B. Zhao, and R. C. Haddon,J. Am. Chem. Soc.,127, 3847 (2005).

    Article  CAS  Google Scholar 

  10. H. T. Ham, C. M. Koo, S. O. Kim, Y. S. Choi, and I. J. Chung,Macromol. Res.,12, 384 (2004).

    Article  CAS  Google Scholar 

  11. R. Zanella, E. V. Basiuk, P. Santiago, V. A. Basiuk, E. Mireles, I. Puente-Lee, and J. M. Saniger,J. Phys. Chem. B,109, 16290 (2005).

    Article  CAS  Google Scholar 

  12. J. B. Cui, C. P. Daghlian, and U. J. Gibson,J. Appl. Phys.,98, 044320 (2005).

    Article  Google Scholar 

  13. H. Muramatsu, Y. A. Kim, T. Hayashi, M. Endo, A. Yonemoto, H. Arikai, F. Okino, and H. Touhara,Chem. Comm., 2002 (2005).

  14. E. Unger, M. Liebau, G. S. Duesberg, A. P. Graham, F. Kreupl, R. Seidel, and W. Hoenlein,Chem. Phys. Lett.,399, 280 (2004).

    Article  CAS  Google Scholar 

  15. B. J. Landi, H. J. Ruf, J. J. Worman, and R. P. Raffaelle,J. Phys. Chem. B,108, 17089 (2004).

    Article  CAS  Google Scholar 

  16. S. Qin, D. Qin, W. T. Ford, D. E. Resasco, and J. E. Herrera,Macromolecules,37, 752 (2004).

    Article  CAS  Google Scholar 

  17. Y. Liu, Z. Yao, and A. Adronov,Macromolecules,38, 1172 (2005).

    Article  CAS  Google Scholar 

  18. V. Datsyuk, C. Guerret-Piécourt, S. Dagréou, L. Billon, J.-C. Dupin, E. Flahaut, A. Peigney, and C. Laurent,Carbon,43, 873 (2005).

    Article  CAS  Google Scholar 

  19. W. Zhang and M. J. Yang,J. Mater. Sci.,39, 4921 (2004).

    Article  CAS  Google Scholar 

  20. S. Qin, D. Qin, W. T. Ford, J. E. Herrera, D. E. Resasco, S. M. Bachilo, and R. B. Weisman,Macromolecules,37, 3965 (2004).

    Article  CAS  Google Scholar 

  21. M. S. P. Shaffer and K. Koziol,Chem. Comm., 2074 (2002).

  22. H.-M. Huang, I.-C. Liu, C.-Y. Chang, H.-C. Tsai, C.-H. Hsu, and R. C.-C. Tsiang,J. Polym. Sci.; A, Polym. Chem.,42, 5802 (2004).

    Article  CAS  Google Scholar 

  23. H. Kong, C. Gao, and D. Y. Yan,Macromolecules,37, 4022 (2004).

    Article  CAS  Google Scholar 

  24. H. Kong, C. Gao, and D. Y. Yan,J. Mater. Chem.,14, 1401 (2004).

    Article  CAS  Google Scholar 

  25. G. Xu, W.-T. Wu, Y. Wang, W. Pang, Q. Zhu, P. Wang, and Y. You,Polymer,47, 5909 (2006).

    Article  CAS  Google Scholar 

  26. H. Cui, W. P. Wang, Y. Z. You, C. H. Liu, and P. H. Wang,Polymer,45, 8717 (2004).

    Article  CAS  Google Scholar 

  27. Y. W. Lee, S. M. Kang, K. R. Yoon, Y. S. Chi, I. S. Choi, S. P. Hong, B. C. Yu, H. J. Paik, and W. S. Yun,Macromol. Res.,13, 356 (2005).

    Article  CAS  Google Scholar 

  28. G. Viswanathan, N. Chakrapani, H. Yang, B. Wei, H. Chung, K. Cho, C. Y. Ryu, and P. M. Ajayan,J. Am. Chem. Soc.,125, 9258 (2003).

    Article  CAS  Google Scholar 

  29. H. J. Barraza, F. Pompeo, E. A. O’Rear, and D. E. Resasco,Nano Lett.,2, 797 (2002).

    Article  CAS  Google Scholar 

  30. D. Baskaran, J. W. Mays, and M. S. Bratcher,Chem. Mater.,17, 3389 (2005).

    Article  CAS  Google Scholar 

  31. A. Satake, Y. Miyajima, and Y. Kobuke,Chem. Mater.,17, 716 (2005).

    Article  CAS  Google Scholar 

  32. X. Lou, R. Daussin, S. Cuenot, A. S. Duwez, C. Pagnoulle, C. Detrembleur, C. Bailly, and R. Jerome,Chem. Mater.,16, 4005 (2004).

    Article  CAS  Google Scholar 

  33. A. Star, Y. Liu, K. Grant, L. Ridvan, J. F. Stoddart, D. W. Steuerman, M. R. Diehl, A. Boukai, and J. R. Heath,Macromolecules,36, 553 (2003).

    Article  CAS  Google Scholar 

  34. H. Murakami and N. Nakashima,J. Nanosci. Nanotechnol.,6, 16 (2006).

    CAS  Google Scholar 

  35. P. Petrov, F. Stassin, C. Pagnoulle, and R. Jerome,Chem. Comm.,23, 2904 (2003).

    Article  Google Scholar 

  36. X. Zhang, J. Zhang, R. Wang, and Z. Liu,Carbon,42, 1455 (2004).

    Article  CAS  Google Scholar 

  37. G. L. Hwang, Y.-T. Shieh, and K. C. Hwang,Adv. Funct. Mater.,14, 487 (2004).

    Article  CAS  Google Scholar 

  38. W. H. Chang, I. W. Cheong, S. E. Shim, and S. Choe,Macromol. Res.,14, 545 (2006).

    Article  CAS  Google Scholar 

  39. M. Kang, S. J. Myung, and H.-J. Jin,Polymer,47, 3961 (2006).

    Article  CAS  Google Scholar 

  40. E. J. Wanless and W. A. Ducker,J. Phys. Chem.,100, 3207 (1996).

    Article  CAS  Google Scholar 

  41. S. Manne, J. P. Cleveland, H. E. Gaub, G. D. Stucky, and P. K. Hansma,Langmuir,10, 4409 (1994).

    Article  CAS  Google Scholar 

  42. I. Park, W. Lee, J. Kim, M. Park, and H. Lee,Sensor. Actuat. B-Chem.,126, 301 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyunjung Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, I., Park, M., Kim, J. et al. Multiwalled carbon nanotubes functionalized with PS via emulsion polymerization. Macromol. Res. 15, 498–505 (2007). https://doi.org/10.1007/BF03218822

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03218822

Keywords

Navigation