Polymers and Inorganics: A Happy Marriage?


The most recent developments in two areas: (a) synthesis of inorganic particles with control over size and shape by polymer additives, and (b) synthesis of inorganic-polymer hybrid materials by bulk polymerization of blends of monomers with nanosized crystals are reviewed. The precipitations of inorganics, such as zinc oxide or calcium carbonate, in presence and under the control of bishydrophilic block or comb copolymers, are relevant to the field of Biomineralization. The application of surface modified latex particles, used as controlling agents, and the formation of hybrid crystals in which the latex is embedded in otherwise perfect crystals, are discussed. The formation of nano sized spheres of amorphous calcium carbonate, stabilized by surfactant-like polymers, is also discussed. Another method for the preparation of nanosized inorganic functional particles is the controlled pyrolysis of metal salt complexes of poly(acrylic acid), as demonstrated by the syntheses of lithium cobalt oxide and zinc/magnesium oxide. Bulk polymerization of methyl methacrylate blends, with for example, nanosized zinc oxide, revealed that the mechanisms of free radical polymerization respond to the presence of these particles. The termination by radical-radical interaction and the gel effect are suppressed in favor of degenerative transfer, resulting in a polymer with enhanced thermal stability. The optical properties of the resulting polymer-particle blends are addressed based on the basic discussion of the miscibility of polymers and nanosized particles.

This is a preview of subscription content, log in to check access.


  1. (1)

    S. Mann,Biomineralization, Oxford University Press, New York 2001.

    Google Scholar 

  2. (2)

    P. M. Dove, J. J. De Yoreo, and S. Weiner, Eds.,Biomineralization, Mineralogical Soc. Amer. Geochemical Soc., Washington, 2003.

    Google Scholar 

  3. (3)

    E. Baeuerlein, Ed.,Biomineralization, Wiley-VCH, Weinheim, 2003.

    Google Scholar 

  4. (4)

    E. Matijevic,Langmuir,10, 8 (1994); E. Matijevic,J. Eur. Ceram. Soc.,18, 1357 (1998).

    Article  CAS  Google Scholar 

  5. (5)

    W. Tremel,Angew. Chem. Int. Ed.,38, 2175 (1999).

    Article  CAS  Google Scholar 

  6. (6)

    D. Horn and J. Rieger,Angew. Chem. Int. Ed.,40, 4330 (2001).

    Article  CAS  Google Scholar 

  7. (7)

    J. B. Hooper and K. S. Schweizer,Macromolecules,38, 8858 (2005).

    Article  CAS  Google Scholar 

  8. (8)

    A. Jain and U. Wiesner,Macromolecules,37, 5665 (2004).

    Article  CAS  Google Scholar 

  9. (9)

    M. R. Bockstaller, Y. Lapetnikov, S. Mergel, and E. L. Thomas,J. Am. Chem. Soc.,125, 5276 (2003).

    Article  CAS  Google Scholar 

  10. (10)

    A. Balasz and T. P. Russell,Nature,434, 55 (2005).

    Article  Google Scholar 

  11. (11)

    G. A. Buxton and A. Balasz,J. Chem. Phys.,117, 7649 (2002).

    Article  CAS  Google Scholar 

  12. (12)

    E. P. Giannelis,Adv. Polym. Sci.,138, 108 (1999).

    Google Scholar 

  13. (13)

    D. Schmidt, D. Shah, and E. P. Giannelis,Curr. Opin. Solid State Mater. Sci.,6, 205 (2002).

    Article  CAS  Google Scholar 

  14. (14)

    W. Caseri,Macromol. Rapid Commun.,21, 705 (2000).

    Article  CAS  Google Scholar 

  15. (15)

    J. Bohm, J. Hausselt, P. Henzi, K. Litfin, and T. Hanemann,Adv. Eng. Mater.,6, 52 (2004).

    Article  Google Scholar 

  16. (16)

    L. H. Lee and W. C. Chen,Chem. Mater.,13, 1137 (2001).

    Article  CAS  Google Scholar 

  17. (17)

    V. Khrenov, M. Klapper, M. Koch, and K. Müllen,Macromol. Chem. Phys.,206, 95 (2005).

    Article  CAS  Google Scholar 

  18. (18)

    J. M. Marentette, J. Norwig, E. Stöckelmann, W. H. Meyer, and G. Wegner,Adv. Mater.,9, 647 (1997).

    Article  CAS  Google Scholar 

  19. (19)

    M. Oner, J. Norwig, W. H. Meyer, and G. Wegner,Chem. Mater.,10, 460 (1998).

    Article  Google Scholar 

  20. (20)

    G. Wegner, P. Baum, M. Müller, J. Norwig, and K. Landfester,Macromolecular Symposia,175, 349 (2001).

    Article  CAS  Google Scholar 

  21. (21)

    A. Taubert, D. Palms, O. Weiss, M. T. Piccini, and D. N. Batchelder,Chem. Mater.,14, 2594 (2002).

    Article  CAS  Google Scholar 

  22. (22)

    A. Taubert, G. Glosser, and D. Palms,Langmuir,18, 4488 (2002).

    Article  CAS  Google Scholar 

  23. (23)

    R. Munoz-Espi, Y. Qi, I. Lieberwirth, C. M. Gomez, and G. Wegner,Chem. Eur. J.,12, 118 (2006).

    Article  CAS  Google Scholar 

  24. (24)

    L. Addadi, S. Raz, and S. Weiner,Adv. Mater.,15, 959 (2003).

    Article  CAS  Google Scholar 

  25. (25)

    M. Faatz, F. Gröhn, and G. Wegner,Adv. Mater.,16, 996 (2004).

    Article  CAS  Google Scholar 

  26. (26)

    M. Faatz, F. Gröhn, and G. Wegner,Mater. Sci. Eng.,C 25, 153 (2005).

    Article  Google Scholar 

  27. (27)

    M. Faatz, W. Cheng, G. Wegner, G. Fytas, R. S. Penciu, and N. Economou,Langmuir,21, 6666 (2005).

    Article  CAS  Google Scholar 

  28. (28)

    B. Guillemet, M. Faatz, F. Gröhn, G. Wegner, and Y. Gnanou,Langmuir,22, 1875 (2006).

    Article  CAS  Google Scholar 

  29. (29)

    A. Sin and P. Odier.Adv. Mater.,12, 649 (2000).

    Article  CAS  Google Scholar 

  30. (30)

    C. Mascilly, P. Courty, and P. Delmon,J. Amer. Ceram. Soc.,53, 56 (1970).

    Article  Google Scholar 

  31. (31)

    L. Lan, W. H. Meyer, G. Wegner, and M. Wohlfahrt-Mehrens,Adv. Mater.,17, 984 (2005).

    Article  Google Scholar 

  32. (32)

    G. Lu, I. Lieberwirth, and G. Wegner,J. Amer. Chem. Soc., in press (2007).

  33. (33)

    M. M. Demir, K. Koynov, K. Akbey, C. Bubeck, I. Park, I. Lieberwirth, and G. Wegner,Macromolecules, submitted.

  34. (34)

    M. M. Demir, M. Memesa, P. Castignolles, and G. Wegner,Macromol. Rapid Commun.,27, 763 (2006).

    Article  CAS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Gerhard Wegner.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wegner, G., Demir, M.M., Faatz, M. et al. Polymers and Inorganics: A Happy Marriage?. Macromol. Res. 15, 95–99 (2007). https://doi.org/10.1007/BF03218759

Download citation


  • nanoparticles
  • mineralization
  • polymer hybrids
  • bishydrophilic polymers
  • optical properties