Polymerization of methyl methacrylate in carbon dioxide using glycidyl methacrylate linked reactive stabilizer: Effect of pressure, reaction time, and mixing

Abstract

Using glycidyl methacrylate-linked poly(dimethylsiloxane), methyl methacrylate was polymerized in supercritical CO2. The effects of CO2 pressure, reaction time, and mixing on the yield, molecular weight, and molecular weight distribution (MWD) of the poly(methyl methacrylate) (PMMA) products were investigated. The shape, number average particle diameter, and particle size distribution (PSD) of the PMMA were characterized. Between 69 and 483 bar, the yield and molar mass of the PMMA products showed a trend of increasing with increasing CO2 pressure. However, the yield leveled off at around 345 bar and the particle diameter of the PMMA increased until the pressure reached 345 bar and decreased thereafter. With increasing pressure, MWD became more uniform while PSD was unaffected. As the reaction time was extended at 207 bar, the particle diameter of PMMA decreased at 0.48 ± 0.03% AIBN, but increased at 0.25% AIBN. Mixing the reactant mixture increased the PMMA yield by 18.6% and 9.3% at 138 and 207 bar, respectively.

This is a preview of subscription content, log in to check access.

References

  1. (1)

    Sumitomo Chemical Company, Sumitomo Atomic Energy Industries,U.S. Pat. 3, 522, 228 (1970).

    Google Scholar 

  2. (2)

    S. D. Smith, J. M. DeSimone, H. Huang, G. York, D. W. Dwight, G. L. Wilkes, and J. E. McGrath,Macromolecules,25, 2575 (1992).

    Article  CAS  Google Scholar 

  3. (3)

    J. M. DeSimone, E. E. Maury, Y. Z. Menceloglu, J. B. McClain, T. J. Romack, and J. R. Combes,Science,265, 356 (1994).

    Article  CAS  Google Scholar 

  4. (4)

    Y. L. Hsiao, E. E. Maury, and J. M. DeSimone,Macromolecules,28, 8159 (1995).

    Article  CAS  Google Scholar 

  5. (5)

    C. Lepilleur and E. J. Beckman,Macromolecules,30, 745 (1997).

    Article  CAS  Google Scholar 

  6. (6)

    J. Y. Park and J. J. Shim,J. Supercritical Fluids,27, 297 (2003).

    Article  CAS  Google Scholar 

  7. (7)

    C. A. Mantelis, R. Barbey, S. Fortini, and T. Meyer,Macromol. React. Eng.,1, 78 (2007).

    Article  CAS  Google Scholar 

  8. (8)

    F. Rindfleisch, T. P. DiNoia, and M. A. McHugh,J. Phys. Chem.,100, 15581 (1996).

    Article  CAS  Google Scholar 

  9. (9)

    M. Lora and M. A. McHugh,Fluid Phase Equilibria,157, 285 (1999).

    Article  CAS  Google Scholar 

  10. (10)

    K. K. Kapellen, C. D. Mistele, and J. M. DeSimone,Macromolecules,29, 495 (1996).

    Article  CAS  Google Scholar 

  11. (11)

    D. A. Canelas and J. M. DeSimone,Macromolecules,30, 5673 (1997).

    Article  CAS  Google Scholar 

  12. (12)

    H. M. Woods, C. Nouvel, P. Licence, D. J. Irvine, and S. M. Howdle,Macromolecules,38, 3271 (2005).

    Article  CAS  Google Scholar 

  13. (13)

    M. R. Giles, R. M. T. Griffiths, A. Aguiar-Ricardo, M. M. C. G. Silva, and S. M. Howdle,Macromolecules,34, 20 (2001).

    Article  CAS  Google Scholar 

  14. (14)

    M. Z. Yates, P. S. Shah, K. P. Johnston, K. T. Lim, and S. Webber,J. Colloid Interf. Sci.,227, 176 (2000).

    Article  CAS  Google Scholar 

  15. (15)

    Q. Xu, B. Han, and H. Yan,Polymer,42, 1369 (2001).

    Article  CAS  Google Scholar 

  16. (16)

    K. A. Shaffer, T. A. Jones, D. A. Canelas, and J. M. DeSimone,Macromolecules,29, 2704 (1996).

    Article  CAS  Google Scholar 

  17. (17)

    M. L. O’Neill, M. Z. Yates, and K. P. Johnston,Macromolecules,31, 2838 (1998).

    Article  Google Scholar 

  18. (18)

    M. L. O’Neill, M. Z. Yates, and K. P. Johnston,Macromolecules,31, 2848 (1998).

    Article  Google Scholar 

  19. (19)

    M. R. Giles, J. N. Hay, S. M. Howdle, and R. J. Winder,Polymer,41, 6715 (2000).

    Article  CAS  Google Scholar 

  20. (20)

    S. M. Klein, V. N. Manoharan, D. J. Pine, and F. F. Lange,Colloid Polym. Sci.,282, 7 (2003).

    Article  CAS  Google Scholar 

  21. (21)

    R. Wang and H. M. Cheung,J. Appl. Polym. Sci.,93, 545 (2004).

    Article  CAS  Google Scholar 

  22. (22)

    S. H. Han, K. K. Park, and S. H. Lee,Macromol. Res.,16, 120 (2008).

    Article  CAS  Google Scholar 

  23. (23)

    S. H. Lee, M. A. LoStracco, B. M. Hasch, and M. A. McHugh,J. Phys. Chem.,98, 4055 (1994).

    Article  CAS  Google Scholar 

  24. (24)

    S. H. Lee,J. Appl. Polym. Sci.,95, 161 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sang-Ho Lee.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Han, S., Park, K. & Lee, S. Polymerization of methyl methacrylate in carbon dioxide using glycidyl methacrylate linked reactive stabilizer: Effect of pressure, reaction time, and mixing. Macromol. Res. 17, 51–57 (2009). https://doi.org/10.1007/BF03218601

Download citation

Keywords

  • polymerization
  • supercritical CO2
  • macromonomer
  • pressure effect
  • mixing