Skip to main content
Log in

Controlling size and distribution of silver nanoparticles generated in inorganic silica nanofibers using poly(vinyl pyrrolidone)

  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Poly(vinyl pyrrolidone) was used successfully to control the size and distribution of silver nanoparticles generated on inorganic silica nanofibers. The inorganic nanofibers were electrospun using sol-gel chemistry of silicates, and the diameter of the prepared nanofibers was unaffected by adding up to 7% of poly(vinyl pyrrolidone). The silver ions, in the form of silver nitrate, were introduced into the silica nanofibers and reduced to metallic silver by ultraviolet irradiation with a subsequent thermal treatment. The size of the generated silver particles was decreased dramatically by adding poly(vinyl pyrrolidone). The size of the silver nanoparticles was 73 nm when no poly(vinyl pyrrolidone) was added but 23 nm with the addition of only 1% of poly(vinyl pyrrolidone). The extent of reduction could be checked by determining the concentration of silver ions leached into water from the silica nanofibers. After thermal treatment of the silica nanofibers, more than 99% of the silver remained in the nanofibers, indicating almost complete reduction of the silver ions to silver metal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Li and Y. Xia,Adv. Mater.,16, 1151 (2004).

    Article  CAS  Google Scholar 

  2. A. Frenot and I. S. Chronakis,Curr. Opin. Colloid In.,8, 64 (2003).

    Article  CAS  Google Scholar 

  3. D. K. Kim, S. H. Park, and B. C. Kim,Macromol. Res.,13, 521 (2005).

    Article  CAS  Google Scholar 

  4. L. Huang, K. Nagapundi, and E. L. Chaikof,J. Biomater. Sci.-Polym. E,12, 979 (2001).

    Article  CAS  Google Scholar 

  5. X. Wang, C. Drew, S. H. Lee, K. J. Senecal, J. Kumar, and L. A. Samuelson,Nano Lett.,2, 1273 (2002).

    Article  CAS  Google Scholar 

  6. W. J. Li, C. T. Laurencin, E. J. Caterson, R. S. Tuan, and F. K. Ko,J. Biomed. Mater. Res. Part A,60, 613 (2002).

    Article  CAS  Google Scholar 

  7. J. A. Matthews, G. E. Wnek, D. G. Simpson, and G. L. Bowlin,Biomacromolecules,3, 232 (2002).

    Article  CAS  Google Scholar 

  8. Z.-M. Huang, Y.-Z. Zhang, M. Kotaki, and S. Ramakrishna,Comp. Sci. Tech.,63, 2223 (2003).

    Article  CAS  Google Scholar 

  9. H. S. Park and Y. O. Park,Korean J. Chem. Eng.,22, 165 (2005).

    Article  CAS  Google Scholar 

  10. Y. H. Jung, H. Y. Kim, and D. R. Lee,Macromol. Res.,13, 385 (2005).

    Article  CAS  Google Scholar 

  11. M. Catauro, M. G. Raucci, F. de Gaetano, and A. Marotta,J. Mater. Sci.,15, 831 (2004).

    Article  CAS  Google Scholar 

  12. E. Verne, S. di Nunziio, M. Bosetti, P. Appendino, C. V. Brovarone, G. Maina, and M. Cannas,Biomaterials,26, 5111 (2005).

    Article  CAS  Google Scholar 

  13. S. L. Percival, P. G. Bowler, and D. Russell,J. Hospital Infection,60, 1 (2005).

    Article  CAS  Google Scholar 

  14. B. Jansen, M. Rinck, P. Wolbring, A. Strohmeier, and T. Jahnns,J. Biomater. Appl.,9, 55 (1994).

    Article  CAS  Google Scholar 

  15. H. Y. Kang, M. J. Jung, and Y. K. Jeong,Korean J. Biotechnol. Bioeng.,15, 521 (2000).

    Google Scholar 

  16. U. Klueh, V. Wagner, S. Kelly, A. Johnson, and J. D. Bryers,J. Biomed. Mater. Res.,53, 621 (2000).

    Article  CAS  Google Scholar 

  17. D. C. Clupper and L. L. Hench,J. Mater. Sci. Mater. Med.,12, 917 (2001).

    Article  CAS  Google Scholar 

  18. I. Sondi and B. Salopek-Sondi,J. Colloid Interf. Sci.,275, 177 (2004).

    Article  CAS  Google Scholar 

  19. Q. B. Yang, D. M. Li, Y. L. Hong, Z. Y. Li, C. Wang, S. L. Qiu, and Y. Wei,Synth. Met.,137, 973 (2003).

    Article  CAS  Google Scholar 

  20. W. K. Son, J. H. Youk, T. S. Lee, and W. H. Park,Macromol. Rapid. Commun.,25, 1632 (2004).

    Article  CAS  Google Scholar 

  21. W. K. Son, J. H. Youk, and W. H. Park,Carbohy. Polym.,65, 430 (2006).

    Article  CAS  Google Scholar 

  22. W. K. Son, D. Cho, and W. H. Park,Nanotechnology,17, 439 (2006).

    Article  CAS  Google Scholar 

  23. G. Larson, R. Velarde-Ortiz, K. Minchow, A. Barrero, and I. G. Loscertales,J. Am. Chem. Soc.,125, 1154 (2003).

    Article  Google Scholar 

  24. Y. Wang and J. J. Santigano-Aviles,Nanotechnology,15, 32 (2004).

    Article  CAS  Google Scholar 

  25. S.-S. Choi, S. G. Lee, S. S. Im, and S. H. Kim,J. Mater. Sci. Lett.,22, 891 (2003).

    Article  CAS  Google Scholar 

  26. H. S. Park, J. H. Lee, and J. D. Nam,Macromol. Res.,14, 430 (2006).

    Article  CAS  Google Scholar 

  27. K. D. Min, J. H. Youk, Y.-J. Kwark, and W. H. Park,Fibers and Polymers,8, 591 (2007).

    Article  CAS  Google Scholar 

  28. Z. Zhang, B. Zhao, and L. Hu,J. Solid State Chem.,121, 105 (1996).

    Article  CAS  Google Scholar 

  29. H. Wang, X. Qiao, J. Chen, and S. Ding,Colloid Surface A,256, 111 (2005).

    Article  CAS  Google Scholar 

  30. W.-J. Jin, H. K. Lee, E. H. Jeong, W. H. Park, and J. H. Youk,Macromol. Rapid Commun.,26, 1903 (2005).

    Article  CAS  Google Scholar 

  31. K. H. Hong, J. L. Park, I. H. Sul, J. H. Youk, and T. J. Kang,J. Polym. Sci. Part B: Polym. Phys.,44, 2468 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Won Ho Park or Young-Je Kwark.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Min, K.D., Park, W.H., Youk, J.H. et al. Controlling size and distribution of silver nanoparticles generated in inorganic silica nanofibers using poly(vinyl pyrrolidone). Macromol. Res. 16, 626–630 (2008). https://doi.org/10.1007/BF03218571

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03218571

Keywords

Navigation