Skip to main content
Log in

Thermally robust highly crosslinked poly(methyl methacrylate-co-divinyl benzene) microspheres by precipitation polymerization

  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

We prepared thermally robust fully crosslinked poly(methyl methacrylate-co-divinyl benzene) [poly(MMA-co-DVB)] microspheres successfully by precipitation polymerization in the absence of a stabilizing agent. The DVB concentration plays a pivotal role not only in the formation of the individually stable microspheres but also in the polymerization characteristics, including the particle size, the uniformity of size, the polymerization yield, and the thermal properties. The number-average diameter of the microspheres increased linearly, from 0.72 to 2.15 μm, and the particle size distribution became narrower, by elevating the uniformity from 1.35 to 1.12, as the DVB concentration increased from 20 to 75 mol%. In addition, the yield of the polymerization increased, from 73.4 to 98.6%, as the DVB concentration increased. Since the prepared particles possess fully crosslinked microstructures, no glass transition temperatures were observed, but all the samples prepared with DVB concentrations ranging from 20 to 75 mol% possess enhanced thermal properties. Based on the DSC and TGA data, the thermal stability of the microspheres prepared by the precipitation polymerization is significantly improved as a result of crosslinking with DVB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Urban and K. Takamura, Eds.,Polymer Dispersions and Their Industrial Applications, Wiley-VCH, Weinheim, 2002.

    Google Scholar 

  2. H. Fudouz and Y. Xia,Adv. Mater.,15, 892 (2003).

    Article  Google Scholar 

  3. J. Ugelstad, P. Stenstad, L. Kilaas, W. S. Prestvik, A. Rian, K. Nustad, R. Herje, and A. Berge,Macromol. Symp.,101, 491 (1996).

    Article  CAS  Google Scholar 

  4. V. L. Covolan, L. H. I. Mei, and C. L. Rossi,Polym. Adv. Technol.,8, 44 (1997).

    Article  CAS  Google Scholar 

  5. S. H. Im, O. O. Park, and M. H. Kwon,Macromol. Res.,11, 110 (2003).

    Article  CAS  Google Scholar 

  6. G. Khang, S. A. Seo, H. S. Choi, J. M. Rhee, and H. B. Lee,Macromol. Res.,10, 246 (2002).

    Article  CAS  Google Scholar 

  7. M. Hattori, E. D. Sudol, and M. S. El-Aasser,J. Polym. Sci., Part A: Polym. Chem.,30, 2027 (1993).

    Google Scholar 

  8. J. Ugelstad, P. C. Mork, K. Herder Kaggerud, T. Ellingsen, and A. Berg,Adv. Colloid Interf.,13, 101 (1980).

    Article  CAS  Google Scholar 

  9. J.-W. Kim and K.-D. Suh,Macromol. Chem. Phys.,202, 621 (2001).

    Article  CAS  Google Scholar 

  10. M. Okubo and T. Nakagawa,Colloid Polym. Sci.,270, 853 (1992).

    Article  CAS  Google Scholar 

  11. K. Ogino, H. Sato, K. Tsuchiya, H. Suzuki, and S. Moriguchi,J. Chromatogr. A,699, 59 (1995).

    Article  CAS  Google Scholar 

  12. S. Omi, K. Katami, A. Yamamoto, and M. Iso,J. Appl. Polym. Sci.,51, 1 (1994).

    Article  CAS  Google Scholar 

  13. S. Omi,Colloids Surface A,109, 97 (1996).

    Article  CAS  Google Scholar 

  14. K. E. J. Barrett, Ed.,Dispersion Polymerization in Organic Media, Wiley, London, 2002.

    Google Scholar 

  15. K. Li and H. D. H. Stöver,J. Polym. Sci., Part A: Polym. Chem.,31, 473 (1993).

    Google Scholar 

  16. M. Hattori, E. D. Sudol, and M. S. El-Aasser,J. Polym. Sci., Part A: Polym. Chem.,50, 2027 (1993).

    CAS  Google Scholar 

  17. J. Choi, S.-Y. Kwak, S. Kang, S.-S. Lee, M. Park, S. Lim, J. Kim, C. R. Choe, and S. I. Hong,J. Polym. Sci., Part A: Polym. Chem.,40, 4368 (2002).

    Article  CAS  Google Scholar 

  18. K. Li and H. D. H. Stöver,J. Polym. Sci., Part A: Polym. Chem.,31, 3257 (1993).

    Article  CAS  Google Scholar 

  19. W.-H. Li and H. D. H. Stöver,J. Polym. Sci., Part A: Polym. Chem.,37, 2899 (1998).

    Article  Google Scholar 

  20. R. S. Frank, J. S. Downey, and H. D. H. Stöver,J. Polym. Sci., Part A: Polym. Chem.,36, 2223 (1998).

    Article  CAS  Google Scholar 

  21. W.-H. Li and H. D. H. Stöver,J. Polym. Sci., Part A: Polym. Chem.,37, 2295 (1998).

    Article  Google Scholar 

  22. S. E. Shim, S. Yang, H. H. Choi, and S. Choe,J. Polym. Sci., Part A: Polym. Chem.,42, 835 (2004).

    Article  CAS  Google Scholar 

  23. Y.-J. Cha, Dissertation. Synthesis of Crosslinked Polystyrene Beads and Characterization as a Filler in SBR Matrix, Department of Chemical Engineering, Inha University, Korea, 1995.

    Google Scholar 

  24. G. F. Levchik, K. Si, S. V. Levchik, G. Camino, and C. A. Wilkie,Polym. Degrad. Stab.,63, 395 (1999).

    Article  Google Scholar 

  25. F. M. Uhl, G. F. Levchik, S. V. Levchik, C. Dick, J. J. Liggat, C. E. Snape, and C. A. Wilkie,Polym. Degrad. Stab.,71, 317 (2001).

    Article  CAS  Google Scholar 

  26. A. Meisters, G. Moad, E. Rizzardo, and D. H. Solomon,Polym. Bull.,20, 499 (1988).

    Article  CAS  Google Scholar 

  27. S. M. Lomankin, R. M. Aseeva, and G. E. Zaikov,Polym. Degrad. Stab.,36, 187 (1992).

    Article  Google Scholar 

  28. D. F. Christopher and A. J. Rudin,Macromol. Sci. Chem.,A16, 1275 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shim, S.E., Yang, S., Jung, H. et al. Thermally robust highly crosslinked poly(methyl methacrylate-co-divinyl benzene) microspheres by precipitation polymerization. Macromol. Res. 12, 233–239 (2004). https://doi.org/10.1007/BF03218393

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03218393

Keywords

Navigation