Skip to main content
Log in

Ionic conductivities of the LiCF3SO3 complexes with liquid crystalline aromatic polyesters having oligo(oxyethylene) pendants

  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

We have synthesized new aromatic polyesters (DiPEG-HQ and DiPEG-BP) by condensation polymerization of a terephthalic acid derivative bearing a pendant oligo(oxyethylene) (195-1,195-2), which has a methoxy terminal group, and two different aromatic diols, hydroquinone and 4,4′-biphenol. The synthesized polymers were characterized by differential scanning calorimetry (DSC), polarizing microscopy, and X-ray diffractometry for their liquid crystallinity (LC), thermal transitions, and structural morphologies in mesophases. The morphology of the LC phases depends strongly on the length of the rigid backbone repeating unit. The DiPEG-BP polymer having a longer repeating unit exhibits both layered and nematic structures before isotropization, whereas the DiPEG-HQ polymer having a shorter repeating unit shows only the layered structure in the mesophase. We found that the layer spacing for DiPEG-HQ is larger than that for DiPEG-BP. Both polymers easily form complexes with LiCF3SO3; we studied this complex formation by FT-IR spectroscopy. The layer spacing of the polymer-electrolyte composites increases upon increasing the amount of the lithium salt. The polymer/salt electrolyte mixtures we investigated at molar ratios of EO: salt in the range of 5–20 exhibit electrical conductivity values at 40 °C of 2.4 × 10−5 and 1.1 × 10−5 S/cm for DiPEG-HQ/LiCF3SO3 andDiPEG-BP/LiCF3SO3, respectively. At 80 °C, these values are higher: 4.6 × 10−4 and 2.5 × 10−4 S/cm, respectively. The activation energy of conductivity depends strongly on the salt concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Shilata, T. Kokayashi, R. Yosomiya, and M. Seki,Eurp. Polym. J.,36, 85 (2000).

    Google Scholar 

  2. L. Wang, B. Yang, X. L. Wang, and X. Z. Tang,J. Appl. Polym. Sci.,71, 1711 (1999).

    Article  CAS  Google Scholar 

  3. T. Noda, S. Kato, Y. Yoshihisa, K. Takeuchi, and K. Murata,J. Power Sources,43–44, 89 (1993).

    Article  Google Scholar 

  4. O. Bohnke, C. Rousselot, P. A. Gillet, and C. Truche,J. Electrochem. Soc.,139, 1862 (1992).

    Article  CAS  Google Scholar 

  5. M. Inaba, Z. Ogumi, and Z. Takehara,J. Electrochem. Soc.,141, 2579 (1994).

    Article  CAS  Google Scholar 

  6. M. Armand,Ann. Rev. Mater. Sci.,16, 254 (1986).

    Article  Google Scholar 

  7. C. A. Angell,Ann. Rev. Phys. Chem.,43, 693 (1992).

    Article  CAS  Google Scholar 

  8. M. Armand, J. Y. Sanchez, M. Gauthier, and Y. Choquette, inElectrochemistry of Novel Materials, J. Lipkowski and P. N. Ross, Eds., VCH Publishers, New York, 1994.

    Google Scholar 

  9. M. Gauthier, A. Belanger, B. Kapfer, G. Vassort, and M. Armand, inPolymer Electrolyte Reviews, J. R. Mac Callum and C. A. Vincent, Eds., Elsevier Applied Science, London, 1989, vol. 2.

    Google Scholar 

  10. K. M. Abraham,Electrochim. Acta.,38, 1233 (1993).

    Article  CAS  Google Scholar 

  11. (a) P. V. Wright,Br. Polym.,7, 319 (1975), (b) P. G. Hall, G. R. Davies, J. E. McIntyre, I. M. Ward, D. J. Banister, and K. M. F. Le Brocq,Polym. Commun.,27, 98 (1986).

    Article  CAS  Google Scholar 

  12. M. Armand, J. M. Chabagno, and M. Duclot, inFast Ion Transport in Solids, P. Vashishta, Ed., North-Holland, New York, 1979, p. 131.

    Google Scholar 

  13. M. Watanabe, K. Sanui, N. Ogata, F. Inoue, T. Kobayashi, and Z. Ohtaki,Polym. J.,17, 549 (1985).

    Article  CAS  Google Scholar 

  14. J. R. M. Ailes, F. M. Gray, J. R. Mac Callum, and C. A. Vincent,Polymer,28, 1977 (1989).

    Google Scholar 

  15. M. Nekoomanesh, H. S. Nagae, C. Booth, and J. R. Owen,J. Electrochem. Soc.,139, 3046 (1992).

    Article  Google Scholar 

  16. R. Borkowska, J. Laskowski, J. Plocharski, J. Przyluski, and W. Wieczorek,J. Appl. Electrochem.,23, 991 (1993).

    Article  CAS  Google Scholar 

  17. E. Quartarone, P. Mustarelli, and A. Magistris,Solid State Ionics,110, 2251 (1995).

    Google Scholar 

  18. K. M. Abraham, Z. Jiang, and B. Carroll,Chem. Mater.,9, 1978 (1997).

    Article  CAS  Google Scholar 

  19. Y.-W. Park and D.-S. Lee,Polymer(Korea),27, 265 (2003).

    CAS  Google Scholar 

  20. W. Wieczorek and J. R. Stevens,J. Phys. Chem. B.,101, 1529 (1997).

    Article  CAS  Google Scholar 

  21. C. Booth, C. V. Nicolas, and D. J. Wilson, inPolymer Electrolyte Reviews, J. R. Mac Callum and C. A. Vincent, Eds., Elsevier Applied Science, London, 1989, vol. 2, p. 229.

    Google Scholar 

  22. M. Kono, E. Hayashi, and M. Watanabe,J. Electrochem. Soc.,145, 1521 (1998).

    Article  CAS  Google Scholar 

  23. P. M. Blonsky, D. F. Shriver, P. Austin, and H. R. Allcock,J. Am. Chem. Soc.,106, 6854 (1984).

    Article  CAS  Google Scholar 

  24. R. A. Reed, T. T. Wooster, R. W. Murray, D. R. Vaniv, J. S. Tonge, and D. F. Shriver,J. Electrochem. Soc.,136, 2565 (1989).

    Article  CAS  Google Scholar 

  25. Y. Heo, Y. Kang, K. Han, and C. Lee,Polymer(Korea),27, 385 (2003).

    CAS  Google Scholar 

  26. I. M. Ward, J. E. McIntyre, G. R. Davies, S. A. Dobrowski, S. R. Mirrezaei, and H. V. St. A. Hubbard,Electrochim. Acta.,37, 1479 (1992).

    Article  CAS  Google Scholar 

  27. H. V. St. A. Hubbard, S. A. Sills, G. R. Davis, J. E. McIntyre, and I. M. Ward,Electrochim. Acta.,43, 1239 (1998).

    Article  CAS  Google Scholar 

  28. F. B. Dias, S. V. Batty, A. Gupta, G. Ungar, J. P. Voss, and P. V. Wright,Electrochim. Acta.,43, 1217 (1998).

    Article  CAS  Google Scholar 

  29. M. K. Park, J. Kim, and J. Y. Bae,Electrochem. Commun.,3, 28 (2001).

    Article  CAS  Google Scholar 

  30. U. Lauter, W. H. Meyer, and G. Wenger,Macromolecules,30, 2092 (1997).

    Article  CAS  Google Scholar 

  31. J.-W. Lee and J.-I. Jin,J. Nanosci. and Nanotech.,3, 219 (2003).

    Article  CAS  Google Scholar 

  32. R. Hooper, L. J. Lyons, M. K. Mapes, D. Schumacher, D. A. Moline, and R. West,Macromolecules,34, 931 (2001).

    Article  CAS  Google Scholar 

  33. S.-B. Lee, S.-C. Song, Y.-S. Sohn, and J.-I. Jin,Macromolecules,34, 7565 (2001).

    Article  CAS  Google Scholar 

  34. H. R. Kricheldorf and D. F. Wulff,Polymer,39, 2681 (1998).

    Google Scholar 

  35. J. Watanabe, N. Sekine, T. Nematsu, M. Sone, and H. R. Kricheldorf,Macromolecules,29, 4816 (1996).

    Article  CAS  Google Scholar 

  36. W. Haung, R. Frech, and R. A. Wheeler,J. Phys. Chem.,98, 100 (1994).

    Article  Google Scholar 

  37. A. Ferry,J. Phys. Chem. B,101, 150 (1997).

    Article  CAS  Google Scholar 

  38. A. Ferry, G. Orädd, and P. Jacobsson,J. Chem. Phys.,108, 7426 (1998).

    Article  CAS  Google Scholar 

  39. M. Digar, S. L. Hung, H. L. Wang, T. C. Wen, and A. Gopalan,Polymer,43, 681 (2002).

    Article  CAS  Google Scholar 

  40. H.-W. Chen and F.-C. Chang,Polymer,42, 9763 (2001).

    Article  CAS  Google Scholar 

  41. P. Jannasch,Polymer,42, 8629 (2001).

    Article  CAS  Google Scholar 

  42. Y.-T. Cheng and T.-C. Wen,Solid State Ionics,107, 161 (1998).

    Article  CAS  Google Scholar 

  43. T.-T. Cheng and T.-C. Wen,J. Electroanal. Chem.,459, 99 (1998).

    Article  CAS  Google Scholar 

  44. J. Y. Song, Y. Y. Wang, and C. C. Wan,J. Power Sources,77, 183 (1999).

    Article  CAS  Google Scholar 

  45. T.-C. Wen, Y.-J. Wang, T.-T. Cheng, and C.-H. Yang,Polymer,40, 3979 (1999).

    Article  CAS  Google Scholar 

  46. M. Watanabe, K. Sanui, and N. Ogata,Macromolecules,19, 815 (1986).

    Article  CAS  Google Scholar 

  47. J. D. van Heumen and J. R. Stevens,Macromolecules,28, 4268 (1995).

    Article  Google Scholar 

  48. T. Sreekanth, M. J. Reddy, S. Subramanyam, and U. V. Subba Rao,Mater. Sci. Eng.,B64, 107 (1999).

    Article  CAS  Google Scholar 

  49. P. P. Chu, M. J. Reddy, and H. M. Kao,Solid State Ionics,156, 141 (2003).

    Article  CAS  Google Scholar 

  50. T. Sreekanth, M. Jaipal Reddy, S. Subramanyam, and U. V. Subba Rao,Mater. Sci. Eng.,B64, 107 (1999).

    Article  CAS  Google Scholar 

  51. T. J. Cleij, L. W. Jenneskens, M. Itübbenhorst, and J. van Turnhout,Macromolecules,32, 8663 (1999).

    Article  CAS  Google Scholar 

  52. J.-L. Qiao, N. Yoshimoto, M. Ishikawa, and M. Morita,Electrochimica Acta.,47, 3441 (2002).

    Article  CAS  Google Scholar 

  53. J. Castillo, I. Delgado, M. Chacón, and R. A. Vargas,Electrochimica Acta.,46, 1695 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, JW., Joo, SH. & Jin, JI. Ionic conductivities of the LiCF3SO3 complexes with liquid crystalline aromatic polyesters having oligo(oxyethylene) pendants. Macromol. Res. 12, 195–205 (2004). https://doi.org/10.1007/BF03218388

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03218388

Keywords

Navigation