Skip to main content
Log in

EVA/clay nanocomposite by solution blending: Effect of aluminosilicate layers on mechanical and thermal properties

  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Ethylene vinyl acetate (EVA)/clay nanocomposites were synthesized by blending a solution of ethylene vinyl acetate copolymer containing 12% vinyl acetate abbreviated as EVA-12 in toluene and dispersion of dodecyl ammonium ion intercalated montmorillonite (12Me-MMT) inN,N-dimethyl acetamide (DMAc). X-ray patterns of sodium montmorillonite (Na+-MMT) and 12Me-MMT exhibited d001 peak at 2θ?=7.4° and 2θ?=5.6° respectively; that is, the interlayer spacing of MMT increased by about 0.39 nm due to intercalation of dodecyl ammonium ions. The XRD trace of EVA showed no peak in the angular range of 3–10° (2θ). In the XRD patterns of EVA/clay hybrids with clay content up to 6 wt% the basal reflection peak of 12Me-MMT was absent, leading to the formation of delaminated configuration of the composites. When the 12Me-MMT content was 8 wt% in the EVA-12 matrix, the hybrid revealed a peak at about 2θ?=5.6°, owing to the aggregation of aluminosilicate layers. Transmission electron microscopic photograph exhibited that an average size of 12–15 nm clay layers were randomly and homogeneously dispersed in the polymer matrix, which led to the formation of nanocomposite with delaminated configuration. The formation of delaminated nanocomposites was manifested through the enhancement of mechanical properties and thermal stability, e.g. tensile strength of an hybrid containing only 2 wt% 12Me-MMT was enhanced by about 36% as compared with neat EVA-12.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Okada, M. Kawasumi, A. Usuki, Y. Kojima, T. Kurauchi, and O. Kamigaito,Mater. Res. Soc. Proc.,171, 45 (1990).

    Article  CAS  Google Scholar 

  2. V. Kuppa and E. Manias,Chem. Mater.,14, 2171 (2002).

    Article  CAS  Google Scholar 

  3. M, Kawasumi, N. Hasegawa, M. Kalo, A. Usuki, and A. Okada,Macromolecules,30, 6333 (1997).

    Article  CAS  Google Scholar 

  4. S. Hambir, N. Bulakh, P. Kodgire, R. Kalgaonkar, and J. P. Jog,J. Polym. Sci., Part B: Polym. Phys.,39, 446 (2001).

    Article  CAS  Google Scholar 

  5. J. C. Huang, Z. K. Zhu, X. D. Ma, X. F. Qian, and J. Yin,J. Mater. Sci.,36, 871 (2001).

    Article  CAS  Google Scholar 

  6. M. Alexandre, G. Beyer, C. Henrist, R. Cloots, A. Rulmont, R. Jerome, and P. Dubois,Macromol. Rapid. Commun.,22, 643 (2001).

    Article  CAS  Google Scholar 

  7. X. Kornmann, in Ph. D. Thesis, Lulea University of Technology, 1999.

  8. M. Pramanik, S. K. Srivastava, B. K. Samantary, and A. K. Bhowmick,J. Appl. Polym. Sci.,87, 2216 (2002).

    Article  Google Scholar 

  9. M. Alexandre, G. Beyer, C. Henrist, R. Cloots, A. Rulmont, R. Jerome, and P. Dubois,Chem. Mater.,13, 3830 (2001).

    Article  CAS  Google Scholar 

  10. X. Kornmann, H. Lindberg, and L. A. Berglund,Polymer,42, 4493 (2001).

    Article  CAS  Google Scholar 

  11. S. K. Srivastava, M. Pramanik, D. Palit, B. K. Mathur, A. K. Kar, B. K. S. Ray, H. Haeuseler, and W. Cordes,Chem. Mater.,13, 4342 (2001).

    Article  CAS  Google Scholar 

  12. G. Lagaly,Solid State Ionics,22, 43 (1986).

    Article  CAS  Google Scholar 

  13. P. Bala, B. K. Samantaray, and S. K. Srivastava,Mater. Res. Bull.,35, 1717 (2000).

    Article  CAS  Google Scholar 

  14. M. H. Noh, L. W. Jang, and D. C. Lee,J. Appl. Polym. Sci.,74, 179 (1999).

    Article  CAS  Google Scholar 

  15. Y. Wu, L. Zhang, Y. Wang, Y. Liang, and D. Yu,J. Appl. Polym. Sci.,82, 2842 (2001).

    Article  CAS  Google Scholar 

  16. T. Wu, S. Hsu, and J. Wu,J. Polym. Sci., Part B: Polym. Phys.,40, 736 (2002).

    Article  CAS  Google Scholar 

  17. M. Tortora, V. Vittora, G. Galli, S. Ritrovati, and E. Chiellim,Macromol. Mater. Eng.,287, 243 (2002).

    Article  CAS  Google Scholar 

  18. X. Liu and Q. Wu,Polymer,43, 1933 (2002).

    Article  CAS  Google Scholar 

  19. W. Jia, E. Segal, D. Kornemandel, Y. Lamhot, M. Narkis, and A. Siegmann,Synthetic Metals,128, 115 (2002).

    Article  CAS  Google Scholar 

  20. S. Ray and A. K. Bhowmick,Rubber. Chem. Technol.,74, 835 (2001).

    Article  CAS  Google Scholar 

  21. Z. Shen, G. P. Siman, and Y. Cheng,Polymer,43, 4251 (2002).

    Article  CAS  Google Scholar 

  22. A. K. Bhowmick and H. L. Stephens, inHandbook of Elastomers, 2nd Edition, Marcel Dekker, New York, 2001.

    Google Scholar 

  23. M. Pramanik, S. K. Srivastava, B. K. Samantaray, and A. K. Bhowmick,J. Mater. Sci. Lett.,20, 1377 (2001).

    Article  CAS  Google Scholar 

  24. J. Madejova and P. Komadel,Clays and Clay Minerals,49, 410 (2001).

    Article  CAS  Google Scholar 

  25. S. Dutta, A. K. Bhowmick, P. G. Mukunda, and T. K. Chaki,Polym. Degrad. Stab.,50, 75 (1995).

    Article  CAS  Google Scholar 

  26. M. Zanetti, G. Camino, R. Thomann, and R. Mulhaupt,Polymer,42, 4501 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pramanik, M., Srivastava, S.K., Samantaray, B.K. et al. EVA/clay nanocomposite by solution blending: Effect of aluminosilicate layers on mechanical and thermal properties. Macromol. Res. 11, 260–266 (2003). https://doi.org/10.1007/BF03218362

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03218362

Keywords

Navigation