Skip to main content
Log in

Effect of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) surface with different wettability on fibroblast behavior

  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) is a microbial storage polymer with biodegradable properties. In order to improve the cell compatibility of PHBV surfaces, the physicochemical treatments have been demonstrated. In this study, physical method was corona discharge treatment and chemical method was chloric acid mixture solution treatment. The physicochemically treated PHBV film surfaces were characterized by the measurement of water contact angle, electron spectroscopy for chemical analysis, and scanning electron microscopy (SEM). The water contact angle of the physicochemically treated PHBV surfaces decreased from 75 to 30∼40 degree, increased hydrophilicity, due to the introduction of oxygen-based functional group onto the PHBV backbone chain. The mouse NIH/3T3 fibroblasts cultured onto the physicochemically treated PHBV film surfaces with different wettability. The effect of the PHBV surface with different wettability was determined by SEM as counts of cell number and [3H]thymidine incorporation as measures of cell proliferation. As the surface wettability increased, the number of the cell adhered and proliferated on the surface was increased. The result seems closely related with the serum protein adsorption on the physicochemically treated PHBV surface. In conclusion, this study demonstrated that the surface wettability of biodegradable polymer as the PHBV plays an important role for cell adhesion and proliferation behavior for biomedical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Gogolewski, M. Jovanoic, S. M. Perren, J. G. Dillon, and M. K. Hughes,J. Biomed. Mater. Res.,27, 1135 (1993).

    Article  CAS  Google Scholar 

  2. S. Akhtar and C. W. Pouton,Drug News Perspectives,2, 89 (1989).

    Google Scholar 

  3. K. Juni and M. Nakano,CRC Crit. Rev. Therap. Drug Carrier Syst.,3, 209 (1987).

    CAS  Google Scholar 

  4. S. J. Lee, G. Khang, J. H. Lee, Y. M. Lee, and H. B. Lee,Polymer(Korea),24(6), 877 (2000).

    CAS  Google Scholar 

  5. G. Khang, S. J. Lee, J. H. Jeon, J. H. Lee, and H. B. Lee,Polymer(Korea),24(6), 869 (2000).

    CAS  Google Scholar 

  6. G. Khang, S. J. Lee, J. H. Lee, and H. B. Lee,Korea Polym. J.,7, 102 (1999).

    CAS  Google Scholar 

  7. J. M. Schakenraad, H. J. Busscher, C. H. R. Wildevuur, and J. Arends,J. Biomed. Mater. Res.,20, 773 (1986).

    Article  CAS  Google Scholar 

  8. P. B. Van Wachem, T. Beugeling, J. Feijen, A. Bantjes, J. P. Detmers, and W. G. Van Aken,Biomaterials,6, 403 (1985).

    Article  Google Scholar 

  9. Y. Tamada and Y. Ikada,J. Colloid Interface Sci.,155, 334 (1993).

    Article  CAS  Google Scholar 

  10. P. B. Van Wachem, A. H. Hogt, T. Beugeling, J. Feijen, A. Bantjes, J. P. Detmers, and W. G. Van Aken,Biomaterials,8, 323 (1987).

    Article  Google Scholar 

  11. D. E. Gregonis, R. Hsu, D. E. Buerger, L. M. Smith, and J. D. Andrade, inMacromolecular Solutions, R. B. Seymoor and D. A. Stahl, Eds., Pergamon, New York, 1982, pp 120.

    Google Scholar 

  12. D. L. Coleman, D. E. Gregonis, and J. D. Andrade,J. Biomed. Mater. Res.,16, 381 (1982).

    Article  CAS  Google Scholar 

  13. T. A. Horbett, M. B. Schway, and B. D. Ratner,J. Colloid Interface Sci.,104, 28 (1985).

    Article  CAS  Google Scholar 

  14. D. L. Walker, M. D. Gregonis, and W. M. Richert,J. Colloid Interface Sci.,157, 41 (1993).

    Article  CAS  Google Scholar 

  15. M. J. Lydon, T. W. Minett, and B. J. Tighe,Biomerials,6, 396 (1985).

    CAS  Google Scholar 

  16. J. H. Lee, H. Kim, G. Khang, H. B. Lee, and M. S. Jhon,J. Colloid Interf. Sci.,152, 563 (1992).

    Article  Google Scholar 

  17. H. B. Lee and J. H. Lee,Biocompatibility of solid substrates based on surface wettability, inEncyclopedic Handbook of Biomaterials and Bioengineering: Part A. Materials, D. L. Wise, D. J. Trantolo, D. E. Altobelli, M. J. Yaszemski, J. D. Gresser, and E. R. Schwartz, Eds., Marcel Dekker, New York, 1995. Vol. 1, pp 371–398.

    Google Scholar 

  18. J. H. Lee and H. B. Lee,J. Biomater. Sci., Polym. Edn.,4, 467 (1993).

    CAS  Google Scholar 

  19. B. J. Jeong, J. H. Lee, and H. B. Lee,J. Colloid Interf. Sci.,178, 757 (1996).

    Article  CAS  Google Scholar 

  20. J. H. Lee, B. J. Jeong, and H. B. Lee,J. Biomed. Mater. Res.,34, 105 (1997).

    Article  CAS  Google Scholar 

  21. J. H. Lee, G. Khang, J. W. Lee, and H. B. Lee,Makromol. Chem., Macromol. Symp.,118, 571 (1997).

    CAS  Google Scholar 

  22. G. Khang, J. W. Lee, J. H. Jeon, J. H. Lee, and H. B. Lee,Biomaterials Res.,1, 1 (1997).

    Google Scholar 

  23. J. H. Lee, J. W. Lee, G. Khang, and H. B. Lee,Biomaterials,18, 351 (1997).

    Article  CAS  Google Scholar 

  24. J. H. Lee and H. B. Lee,J. Biomed. Mater. Res.,41, 304 (1998).

    Article  CAS  Google Scholar 

  25. J. H. Lee, G. Khang, J. W. Lee, and H. B. Lee,J. Biomed. Mater. Res.,40, 180 (1998).

    Article  CAS  Google Scholar 

  26. Y. Iwasaki, K. Ishihara, N. Nakabayashi, G. Khang, J. H. Jeon, J. W. Lee, and H. B. Lee,J. Biomater. Sci., Polym. Edn.,9, 801 (1998).

    Article  CAS  Google Scholar 

  27. J. H. Lee, G. Khang, J. W. Lee, and H. B. Lee,J. Colloid Interf. Sci.,205, 323 (1998).

    Article  CAS  Google Scholar 

  28. G. Khang, J. H. Jeon, J. C. Cho, J. M. Rhee, and H. B. Lee,Polymer(Korea),23, 861 (1999).

    CAS  Google Scholar 

  29. G. Khang, S. J. Lee, J. H. Jeon, J. H. Lee, and H. B. Lee,Polymer(Korea),24, 869 (2000).

    CAS  Google Scholar 

  30. G. Khang, C. S. Park, J. M. Rhee, S. J. Lee, Y. M. Lee, M. K. Choi, I. Lee, and H. B. Lee,Korea Polym. J.,9, 267 (2001).

    CAS  Google Scholar 

  31. G. Khang, J.-H. Choee, J. M. Rhee, and H. B. Lee,J. Appl. Polym. Sci., in press (2001).

  32. J. H. Lee, S. J. Lee, G. Khang, and H. B. Lee,J. Colloid Interf. Sci.,230, 84 (2000).

    Article  CAS  Google Scholar 

  33. J. H. Lee, H. W. Jung, I. K. Kang, and H. B. Lee,Biomaterials,15, 705 (1994).

    Article  CAS  Google Scholar 

  34. P. B. van Wachem, T. Beugeling, J. Feijen, A. Bantjes, J. P. Detmers and W. G. van Aken,Biomaterials,6, 403 (1985).

    Article  Google Scholar 

  35. P. B. van Wachem, A. H. Hogt and T. Beugeling,Biomaterials,8, 323 (1987).

    Article  Google Scholar 

  36. Y. Tamada and Y. Ikada, inPolymers in Medicine II, E. Cheillin, P. Giusti, C. Migliaresl, and L. Nicolas, Eds., Plenum Press, New York, 1986, pp 101.

    Google Scholar 

  37. Y. Tamada and Y. Ikada,J. Colloid Interf. Sci.,155, 334 (1993).

    Article  CAS  Google Scholar 

  38. Y. Tamada and Y. Ikada,J. Biomed. Mater. Res.,28, 783 (1994).

    Article  CAS  Google Scholar 

  39. G. Khang,. J. H. Lee, J. M. Rhee, and H. B. Lee,Korea Polym. J.,8, 276 (2000).

    Google Scholar 

  40. G. Khang, S. J. Lee, Y. M. Lee, J. H. Lee, and H. B. Lee,Korea Polym. J.,8, 179 (2000).

    CAS  Google Scholar 

  41. J. H. Lee, D. K. Kim, G. Khang, and J. S. Lee,Biomaterials Res.,2, 8 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, S.J., Lee, Y.M., Khang, G. et al. Effect of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) surface with different wettability on fibroblast behavior. Macromol. Res. 10, 150–157 (2002). https://doi.org/10.1007/BF03218265

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03218265

Keywords

Navigation