Skip to main content

Advertisement

Log in

Proteomic analysis of silver nanoparticle toxicity in rat

  • Published:
Toxicology and Environmental Health Sciences Aims and scope Submit manuscript

Abstract

Silver nanoparticles (SNPs) have received considerable attention recently, because SNPs with different shapes and sizes exhibit variable antimicrobial activity, which makes them useful for medical and hygienic purposes. SNPs have been detected in various tissues and organisms after inhalation, oral ingestion, and contact with the skin, indicating that SNPs can be distributed to different body tissues after uptake. Thus, the toxicity of SNPs to different body tissues after their uptake needs to be studied. In this study, we performed a proteomic analysis of liver, lung, and kidney tissues in rats exposed to approximately 50 nm SNPs by intravascular injection. Then, the differentially expressed proteins representing a dose-dependent response were identified. The differentially expressed proteins were mostly related to the known toxicity of SNPs, such as apoptosis, increased reactive oxygen species, thrombus formation, and inflammation. Additionally, proteins related to metabolic disorders including diabetes were identified as differentially expressed proteins in kidney, based solely on the analysis of the protein profile and related disease pathway. In conclusion, the differentially expressed proteins identified in this study could provide basic data for understanding the toxic and pathological responses of SNP-exposed tissues and to identify candidate SNP toxicity biomarkers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Marcato, P. D. & Durán, N. New aspects of nanopharmaceutical delivery systems.J. Nanosci. Nanotechnol. 8, 2216–2229 (2008).

    Article  PubMed  CAS  Google Scholar 

  2. Manocchi, A. K., Horelik, N. E., Lee, B. & Yi, H. Simple, readily controllable palladium nanoparticle formation on surface-assembled viral nanotemplates.Langmuir 26, 3670–3677 (2010).

    Article  PubMed  CAS  Google Scholar 

  3. Maynard, A. D. A Research Strategy for Addressing Risk. In: Nanotechnology, Woodrow Wilson International Center for Scholars (2006).

  4. Chen, X.et al. A novel testis protein, RSB-66, interacting with INCA1 (inhibitor of Cdk interacting with cyclin A1).Biochem. Cell. Biol. 86, 345–351 (2008).

    Article  PubMed  CAS  Google Scholar 

  5. Morones, J. R.et al. The bactericidal effect of silver nanoparticles.Nanotechnology 16, 2346–2353 (2005)

    Article  PubMed  CAS  Google Scholar 

  6. White, R. J. An historical overview of the use of silver in wound management.Br. J. Nurs. 10, S3–8 (2001).

    Google Scholar 

  7. Sondi, I. & Salopek-Sondi, B. Silver nanoparticles as antimicrobial agent: A case study onE. coli as a model for Gram-negative bacteria.J. Colloid Interface Sci. 275, 177–182 (2004).

    Article  PubMed  CAS  Google Scholar 

  8. Kim, J. S.et al. Antimicrobial effects of silver nanoparticles.Nanomed. 3, 95–101 (2007).

    CAS  Google Scholar 

  9. Gade, A. K.et al. Exploitation of Aspergillus niger for fabrication of silver nanoparticles.J. Biobased. Mater. Bioenergy 2, 243–247 (2008).

    Article  Google Scholar 

  10. Raffi, M.et al. Antibacterial characterization of silver nanoparticles against E. coli ATCC-15224.J. Mater. Sci. Technol. 24, 192–196 (2008).

    CAS  Google Scholar 

  11. Lok, C. N.et al. Proteomic analysis of the mode of antibacterial action of silver nanoparticles.J. Proteome Res. 5, 916–924 (2006).

    Article  PubMed  CAS  Google Scholar 

  12. Hussain, S. M., Hess, K., Gearhart, J., Geiss, K. & Schlager, J. In vitro toxicity of nanoparticles in BRL3A rat liver cells.Toxicol. In vitro 19, 975–983 (2005).

    Article  PubMed  CAS  Google Scholar 

  13. Carlson, C.et al. Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species.J. Phys. Chem. B 112, 13608–13619 (2008).

    Article  PubMed  CAS  Google Scholar 

  14. Hussain, S. M.et al. The Interaction of manganese nanoparticles with PC-12 cells induces dopamine depletion.Toxicol. Sci. 92, 456–463 (2006).

    Article  PubMed  CAS  Google Scholar 

  15. Sung, J. H.et al. Subchronic inhalation toxicity of silver nanoparticles.Inhalation Toxicol. 20, 567–574 (2008).

    Article  CAS  Google Scholar 

  16. Oberdorster, G.et al. Extrapulmonary translocation of ultrafine carbon particles following whole-body inhalation exposure of rats.J. Toxicol. Environ. Health Part A 65, 1531–1543 (2002).

    Article  PubMed  CAS  Google Scholar 

  17. Oberdorster, G. Pulmonary effects of inhaled ultrafine particles.Int. Arch. Occup. Environ. Health 74, 1–8 (2001).

    Article  PubMed  CAS  Google Scholar 

  18. Kreilgaard, M. Influence of microemulsions on cutaneous drug delivery.Adv. Drug Delivery Rev. 54, S77–98 (2002).

    Article  Google Scholar 

  19. Sinha, A., Singh, C., Parmar, D. & Singh, M. P. Proteomics in clinical interventions: Achievements and limitations in biomarker development.Life Sci. 80, 1345–1354 (2007).

    Article  PubMed  CAS  Google Scholar 

  20. Fernandez, J., Gharahdaghi, F. & Mische, S. M. Routine identification of proteins from sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) gels or polyvinyl difluoride membranes using matrix assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS).Electrophoresis 19, 1036–1045 (1998).

    Article  PubMed  CAS  Google Scholar 

  21. Braisted, J. C.et al. The APEX quantitative proteomics tool: generating protein quantitation estimates from LC-MS/MS proteomics results.BMC Bioinf. 9, 529–539 (2008).

    Article  Google Scholar 

  22. Zhu, J. Y., Huang, H. Q., Bao, X. D., Lin, Q. M. & Cai, Z. Acute toxicity profile of cadmium revealed by proteomics in brain tissue ofParalichthys olivaceus: potential role of transferrin in cadmium toxicity.Aquat. Toxicol. 78, 127–135 (2006).

    Article  PubMed  CAS  Google Scholar 

  23. Kim, H. R.et al. Protein profiles of bovine placenta derived from somatic cell nuclear transfer.Proteomics 5, 4264–4273 (2005).

    Article  PubMed  CAS  Google Scholar 

  24. Diederichs, S.et al. of interaction partners and substrates of the cyclin A1-CDK2 complex.J. Biol. Chem. 279, 33727–33741 (2004).

    Article  PubMed  CAS  Google Scholar 

  25. Peshavaria, M. & Day, I. N. Molecular structure of the human muscle-specific enolase gene (ENO3).Biochem. J. 275, 427–433 (1991).

    PubMed  CAS  Google Scholar 

  26. Dinovo, E. C. & Boyer, P. D. Isotopic probes of the enolase reaction mechanism.J. Biol. Chem. 240, 4586–4593 (1971).

    Google Scholar 

  27. Loar, P.et al. Inhibition of glycolysis enhances cisplatin-induced apoptosis in ovarian cancer cells.Am. J. Obstet. Gynecol. 202, 371.e1–8 (2010).

    Article  Google Scholar 

  28. Li, P. W., Kuo, T. H., Chang, J. H., Yeh, J. M. & Chan, W. H. Induction of cytotoxicity and apoptosis in mouse blastocysts by silver nanoparticles.Toxicol. Lett. 197, 82–87 (2010).

    Article  PubMed  CAS  Google Scholar 

  29. Miura, N. & Shinohara, Y. Cytotoxic effect and apoptosis induction by silver nanoparticles in HeLa cells.Biochem. Biophys. Res. Commun. 390, 733–737 (2009).

    Article  PubMed  CAS  Google Scholar 

  30. Lapied, E., Moudilou, E., Exbrayat, J. M., Oughton, H. & Joner, E. J. Silver nanoparticle exposure causes apoptotic response in the earthworm Lumbricus terrestris (Oligochaeta).Nanomed. 5, 975–984 (2010).

    Article  CAS  Google Scholar 

  31. Feo, S., Arcuri, D., Piddini, E., Passantino, R. & Giallongo, A. ENO1 gene product binds to the c-myc promoter and acts as a transcriptional repressor: relationship with Myc promoter-binding protein 1 (MBP-1).FEBS Lett. 473, 47–52 (2000).

    Article  PubMed  CAS  Google Scholar 

  32. Higuti, T.et al. The complete amino acid sequence of subunit d of rat liver mitochondrial H(+)-ATP synthase.J. Biochem. 114, 714–717 (1991).

    Google Scholar 

  33. Horn, D. & Barrientos, A. Mitochondrial copper metabolism and delivery to cytochrome c oxidase.IUBMB life 60, 421–429 (2008).

    Article  PubMed  CAS  Google Scholar 

  34. Ko, Y. H., Hullihen, J., Hong, S. & Pedersen, P. L. Mitochondrial F(0)F(1) ATP synthase. Subunit regions on the F1 motor shielded by F(0), Functional significance, and evidence for an involvement of the unique F(0) subunit F(6).J. Biol. Chem. 275, 32931–33939 (2000).

    Article  PubMed  CAS  Google Scholar 

  35. Das, A. M. Regulation of the mitochondrial ATP-synthase in health and disease.Mol. Genet. Metab. 79, 71–82 (2003).

    Article  PubMed  CAS  Google Scholar 

  36. AshaRani, P. V., Hande, M. P. & Valiyaveettil, S. Anti-proliferative activity of silver nanoparticles.BMC Cell Biol. 10, 65–78 (2009).

    Article  PubMed  CAS  Google Scholar 

  37. Kim, M.et al. Increased expression of the F1Fo ATP synthase in response to iron in heart mitochondria.BMB Rep. 41, 153–157 (2008).

    Article  PubMed  CAS  Google Scholar 

  38. AshaRani, P. V., Low Kah, M. G., Hande, M. P. & Valiyaveettil, S. Cytotoxicity and genotoxicity of silver nanoparticles in human cells.ACS Nano 3, 279–290 (2009).

    Article  PubMed  CAS  Google Scholar 

  39. Tjelle, T. E., Lovdal, T. & Berg, T. Phagosome dynamics and function.Bioessays 22, 255–263 (2000).

    Article  PubMed  CAS  Google Scholar 

  40. Nakanishi, H. & Takai, Y. Roles of nectins in cell adhesion, migration and polarization.Biol. Chem. 385, 885–892 (2004).

    Article  PubMed  CAS  Google Scholar 

  41. Stuart, L. M. & Ezekowitz, R. A. Phagocytosis: elegant complexity.Immunity 22, 539–550 (2005).

    Article  PubMed  CAS  Google Scholar 

  42. Thomas, T. H. & Advani, A. Inflammation in cardiovascular disease and regulation of the actin cytoskeleton in inflammatory cells: the actin cytoskeleton as a target.Cardiovasc. Hematol. Agents Med. Chem. 4, 165–182 (2006).

    Article  PubMed  CAS  Google Scholar 

  43. Bastian, B. C. Annexins in cancer and autoimmune diseases.Cell. Mol. Life Sci. 53, 554–556 (1997).

    Article  PubMed  CAS  Google Scholar 

  44. Gerke, V., Creutz, C. E. & Moss, S. E. Annexins: linking Ca2+ signalling to membrane dynamics.Nat. Rev. Mol. Cell. Biol. 6, 449–461 (2006).

    Article  Google Scholar 

  45. Moss, S. E. & Morgan, R. O. The annexins.Genome Biol. 5, 219–226 (2004). or46|Jun, E. A.et al. Silver nanoparticles enhance thrombus formation through increased platelet aggregation and procoagulant activity.Nanotoxicology in press, DOI: 10.3109/17435390.2010.506250 (2010).

    Article  PubMed  Google Scholar 

  46. Rosen, D. R.et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis.Nature 362, 59–62 (1993).

    Article  PubMed  CAS  Google Scholar 

  47. Elchuri, S.et al. CuZnSOD deficiency leads to persistent and widespread oxidative damage and hepatocarcinogenesis later in life.Oncogene 24, 367–380 (2005).

    Article  PubMed  CAS  Google Scholar 

  48. Muller, F. L.et al. Absence of CuZn superoxide dismutase leads to elevated oxidative stress and acceleration of age-dependent skeletal muscle atrophy.Free Radic. Biol. Med. 40, 1993–2004 (2006).

    Article  PubMed  CAS  Google Scholar 

  49. Sentman, M. L.et al. Phenotypes of mice lacking extracellular superoxide dismutase and copper- and zinccontaining superoxide dismutase.J. Biol. Chem. 281, 6904–6909 (2006).

    Article  PubMed  CAS  Google Scholar 

  50. Wu, Y. Z.et al. Interaction of surfactant protein A with peroxiredoxin 6 regulates phospholipase A2 activity.J. Biol. Chem. 281, 7515–7525 (2006).

    Article  PubMed  CAS  Google Scholar 

  51. Roede, J. R.et al. In vitro and in silico characterization of peroxiredoxin 6 modified by 4-hydroxynonenal and 4-oxononenal.Chem. Res. Toxicol. 21, 2289–2299 (2008).

    Article  PubMed  CAS  Google Scholar 

  52. Manevich, Y.et al. Binding of peroxiredoxin 6 to substrate determines differential phospholipid hydroperoxide peroxidase and phospholipase A(2) activities.Biochem. Biophys. 485, 139–149 (2009).

    Article  CAS  Google Scholar 

  53. Fatma, N.et al. Peroxiredoxin 6 delivery attenuates TNF-alpha-and glutamate-induced retinal ganglion cell death by limiting ROS levels and maintaining Ca2+ homeostasis.Brain Res. 1233, 63–78 (2008).

    Article  PubMed  CAS  Google Scholar 

  54. Foldbjerg, R.et al. PVP-coated silver nanoparticles and silver ions induce reactive oxygen species, apoptosis and necrosis in THP-1 monocytes.Toxicol. Lett. 190, 156–162 (2009).

    Article  PubMed  CAS  Google Scholar 

  55. Engle, S. J.et al. Adenine phosphoribosyltransferasedeficient mice develop 2,8-dihydroxyadenine nephrolithiasis.Proc. Natl. Acad. Sci. 93, 5307–5312 (1996).

    Article  PubMed  CAS  Google Scholar 

  56. Kim, W. Y., Kim, J., Park, J. D., Ryu, H. Y. & Yu, I. J. Histological study of gender differences in accumulation of silver nanoparticles in kidneys of fischer 344 rats.J. Toxicol. Environ. Health Part A 72, 1279–1284 (2009).

    Article  PubMed  CAS  Google Scholar 

  57. Cederholm, A. & Frostegård, J. Annexin A5 as a novel player in prevention of atherothrombosis in SLE and in the general population.Ann. NY Acad. Sci. 1108, 96–103 (2007).

    Article  PubMed  CAS  Google Scholar 

  58. Schlaepfer, D. D., Jones, J. & Haigler, H. T. Inhibition of protein kinase C by annexin V.Biochem. 31, 1886–1891 (1992).

    Article  CAS  Google Scholar 

  59. Zeglen, S., Zakliczyński, M., Nozyński, J., Rogala, B. & Zembala, M. sCD30, interleukin-1beta-converting enzyme and anti-Annexin V autoantibodies concentrations in heart transplant recipients.Transpl. Immunol. 16, 227–231 (2006).

    Article  PubMed  CAS  Google Scholar 

  60. Horio, Y.et al. Rat cytosolic aspartate aminotranferase: molecular cloning of cDNA and expression in Escherichia coli.J. Biochem. 103, 797–804 (1988).

    PubMed  CAS  Google Scholar 

  61. Tordjman, J.et al. Cytosolic aspartate aminotransferase, a new partner in adipocyte glyceroneogenesis and an atypical target of thiazolidinedione.J. Biol. Chem. 282, 23591–23602 (2007).

    Article  PubMed  CAS  Google Scholar 

  62. Zafar, M., Naqvi, S. N. H., Ahmed, M. & Kaimkhani, Z. A. Altered kidney morphology and enzymes in streptozotocin induced diabetic rats.Int. J. Morphol. 27, 783–790 (2009).

    Google Scholar 

  63. Aperia, A., Broberger, O., Larsson, A. & Snellman, K. Studies of renal urea cycle enzymes. I. Renal concentrating ability and urea cycle enzymes in the rat during protein deprivation.Scand. J. Clin. Lab. Invest. 39, 329–336 (1979).

    Article  PubMed  CAS  Google Scholar 

  64. Barceló-Batllori, S.et al. Proteomic analysis of cytokine induced proteins in human intestinal epithelial cells: implications for inflammatory bowel diseases.Proteomics 2, 551–560 (2002).

    Article  PubMed  Google Scholar 

  65. Kim, E., Maeng, J. H., Lee, D. H. & Kim, J. M. Correlation of biomarkersand histological responses in manufactured silver nanoparticle toxicity.Toxicol. Environ. Health Sci. 1, 17–23 (2009).

    Article  Google Scholar 

  66. Langbein, S.et al. Metastasis is promoted by a bioenergetic switch: new targets for progressive renal cell cancer.Int. J. Cancer 122, 2422–2428 (2008).

    Article  PubMed  CAS  Google Scholar 

  67. Boros, L. G.et al. Nonoxidative pentose phosphate pathways and their direct role in ribose synthesis in tumors: is cancer a disease of cellular glucose metabolism?Med. Hypotheses 50, 55–59 (1998).

    Article  PubMed  CAS  Google Scholar 

  68. Steer, K. A., Sochor, M., Gonzalez, A. M. & Patricia, M. Regulation of pathways of glucose metabolism in kidney: Specific linking of pentose phosphate pathway activity with kidney growth in experimental diabetes and unilateral nephrectomy.FEBS Lett. 150, 494–498 (1982).

    Article  PubMed  CAS  Google Scholar 

  69. Frisell, W. R. & Mackenzie, C. G. Separation and purification of sarcosine dehydrogenase and dimethylglycine dehydrogenase.J. Biol. Chem. 237, 94–98 (1962).

    PubMed  CAS  Google Scholar 

  70. Lang, H., Polster, M. & Brandsch, R. Rat liver dimethylglycine dehydrogenase. Flavinylation of the enzyme in hepatocytes in primary culture and characterization of a cDNA clone.Eur. J. Biochem. 198, 793–799 (1991).

    Article  PubMed  CAS  Google Scholar 

  71. Hoskins, D. D. & Mackenzie, C. G. Solubilization and electron transfer flavoprotein requirement of mitochondrial sarcosine dehydrogenase and dimethylglycine dehydrogenase.J. Biol. Chem. 236, 177–183 (1961).

    PubMed  CAS  Google Scholar 

  72. Cook, R. J., Misono, K. S. & Wagner, C. The amino acid sequences of the flavin-peptides of dimethylglycine dehydrogenase and sarcosine dehydrogenase from rat liver mitochondria.J. Biol. Chem. 260, 12998–13002 (1985).

    PubMed  CAS  Google Scholar 

  73. Binzak, B. A.et al. Cloning of dimethylglycine dehydrogenase and a new human inborn error of metabolism, dimethylglycine dehydrogenase deficiency.Am. J. Hum. Genet. 68, 839–847 (2001).

    Article  PubMed  CAS  Google Scholar 

  74. Moolenaar, S. H.et al. Defect in dimethylglycine dehydrogenase, a new inborn error of metabolism: NMR spectroscopy study.Clin. Chem. 45, 459–464 (1999).

    PubMed  CAS  Google Scholar 

  75. Urban, P., Chirat, I. & Lederer, F. Rat kidney L-2-hydroxyacid oxidase. Structural and mechanistic comparison with flavocytochrome b2 from baker’s yeast.Biochem. 27, 7365–7371 (1988).

    Article  CAS  Google Scholar 

  76. Diêp Lê, K. H. & Lederer, F. Amino acid sequence of long chain alpha-hydroxy acid oxidase from rat kidney, a member of the family of FMN-dependent alphahydroxy acid-oxidizing enzymes.J. Biol. Chem. 266, 20877–20881 (1991).

    PubMed  Google Scholar 

  77. Risérus, U., Willett, W. C. & Hu, F. B. Dietary fats and prevention of type 2 diabetes.Prog. Lipid Res. 48, 44–51 (2009).

    Article  PubMed  Google Scholar 

  78. Fielden, M. R.et al. A gene expression signature that predicts the future onset of drug-induced renal tubular toxicity.Toxicol. Pathol. 33, 675–683 (2005).

    Article  PubMed  CAS  Google Scholar 

  79. Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities utilizing the principle of protein dye binding.Anal. Biochem. 72, 248–254 (1976).

    Article  PubMed  CAS  Google Scholar 

  80. Rabilloud, T.et al. Two-dimensional electrophoresis of human placental mitochondria and protein identification by mass spectrometry: toward a human mitochondrial proteome.Electrophoresis 19, 1006–1014 (1998).

    Article  PubMed  CAS  Google Scholar 

  81. Oakley, B. R., Kirsch, D. R. & Morris, N. R. Experimentally improved reliability of ultrasensitive silver staining of protein in polyacrylamide gels.Anal. Biochem. 105, 361–363 (1980).

    Article  PubMed  CAS  Google Scholar 

  82. Shevchenko, A., Wilm, M., Vorm, O. & Mann, M. Mass spectrometric sequencing of proteins from silverstained polyacrylamide gels.Anal. Chem. 68, 850–858 (1996).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Eunjoo Kim or Joon Mee Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, E., Chu, Y.C., Han, J.Y. et al. Proteomic analysis of silver nanoparticle toxicity in rat. Toxicol. Environ. Health. Sci. 2, 251–262 (2010). https://doi.org/10.1007/BF03217491

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03217491

Keywords

Navigation