Skip to main content
Log in

Dispersion, fractionation and characterization of sub-100nm P25 TiO2 nanoparticles in aqueous media

  • Original Paper
  • Published:
Toxicology and Environmental Health Sciences Aims and scope Submit manuscript

Abstract

Despite of the widespread use of manufactured nanomaterials and increasing concerns on their potential risk, only limited information is available on their physicochemical properties in toxicologically relavant aqueous media. Here, P25 TiO2 (Evonik GmbH), one of the well-known and widely-used photocatalytic TiO2, was dispersed and fractionated in aqueous media, and its physicochemical properties, especially for its sub-100 nm fraction, was carefullly studied. The colloidal properties of TiO2 nanoparticles, such as ag]glomeration and sedimentation, were found strongly dependent on the physicochemical characteristics of nanoparticles (e.g., hydrodynamic size distribution, type of capping ligands and surface charge) as well as those of the aqueous media used (e.g., ionic strength and chemical compositions). This study has shown the importance of standardized dispersion and characterization protocol for toxicity tests, which is urgently needed for reliable, reproducible and impartial toxicity tests of manufactured nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nel, A., Xia, T., Madler, L. & Li, N. Toxic potential of materials at the nanolevel.Science 311, 622–627 (2006).

    Article  PubMed  CAS  Google Scholar 

  2. Carlson, C.et al.Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species.J. Phys. Chem. B 112, 13608–13619 (2008).

    Article  PubMed  CAS  Google Scholar 

  3. Hussain, S. M., Hess, K. L., Gearhart, J. M., Geiss, K. T. & Schlag]er, J. J. In vitro toxicity of nanoparticles in BRL 3A rat liver cells.Toxicol. In Vitro 19, 975–983 (2005).

    Article  PubMed  CAS  Google Scholar 

  4. OECD. Manufactured Nanomaterials: Work Programe 2009-2012, Vol. 16. (2009).

  5. Gumy, D.et al.Catalytic activity of commercial of TiO2 powders for the abatement of the bacteria (E-coli) under solar simulated light: Influence of the isoelectric point.Appl. Catal. B-Environ.63, 76–84 (2006).

    Article  CAS  Google Scholar 

  6. French, R. A.et al. Influence of ionic strength, pH, and cation valence on ag]gregation kinetics of titanium dioxide nanoparticles.Environ. Sci. Technol.43, 1354–1359 (2009).

    Article  PubMed  CAS  Google Scholar 

  7. Long, T. C., Saleh, N., Tilton, R. D., Lowry, G. V. & Veronesi, B. Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2): Implications for nanoparticle neurotoxicity.Environ. Sci. Technol. 40, 4346–4352 (2006).

    Article  PubMed  CAS  Google Scholar 

  8. Tryk, D. A., Fujishima, A. & Honda, K. Recent topics in photoelectrochemistry: achievements and future prospects.Electrochim. Acta 45, 2363–2376 (2000).

    Article  CAS  Google Scholar 

  9. Gratzel, M. Photoelectrochemical cells.Nature 414, 338–344 (2001).

    Article  PubMed  CAS  Google Scholar 

  10. Salvador, A., Pascual-Marti, M. C., Adell, J. R., Requeni, A. & March, J. G. Analytical methodologies for atomic spectrometric determination of metallic oxides in UV sunscreen creams.J. Pharm. Biomed. Anal.22, 301–306 (2000).

    Article  PubMed  CAS  Google Scholar 

  11. Kong, S. J., Kim, B. M., Lee, Y. J. & Chung, H. W. Titanium dioxide nanoparticles trigger p53-mediated damag]e response in peripheral blood lymphocytes.Environ. Mol. Mutag]en.49, 399–405 (2008).

    Article  Google Scholar 

  12. OECD. Report of OECD Workshop on Exposure Assessment and Exposure Mitigation: Manufactured Nanomaterials, Vol. 13 (2009).

  13. Spurr, R. A. & Myers, H. Quantitative analysis of anatase-rutile mixtures with an X-ray diffractometer.Anal. Chem.29, 760–762 (2002).

    Article  Google Scholar 

  14. Evonic Safety data sheet AEROXIDE TiO2 P25, Vol. 3.7/REG EU (2008).

  15. Jiang, J. K., Oberdorster, G. & Biswas, P. Characterization of size, surface charge, and ag]glomeration state of nanoparticle dispersions for toxicological studies.J. Nanopart. Res. 11, 77–89 (2009).

    Article  CAS  Google Scholar 

  16. Morrison, I. & Ross, S. Colloidal Dispersions: Suspensions, Emulsions, and Foams. Wiley-Interscience, New York (2002).

  17. US.EPA. Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms. Washington, DC (2002).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae Hyun Yoon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kwon, D., Lee, S.H., Kim, J. et al. Dispersion, fractionation and characterization of sub-100nm P25 TiO2 nanoparticles in aqueous media. Toxicol. Environ. Health. Sci. 2, 78–85 (2010). https://doi.org/10.1007/BF03216516

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03216516

Keywords

Navigation