Skip to main content
Log in

Physiological response ofLemna species to herbicides and its probable use in toxicity testing

  • Original Paper
  • Published:
Toxicology and Environmental Health Sciences Aims and scope Submit manuscript

Abstract

Herbicides such as atrazine, diuron, simazine and glyphosate are of growing concern with respect to ecotoxicity as they are often encountered in outdoor water samples. The present study evaluates the potential damage caused by these xenobiotics on physiology of the aquatic plantLemna sp., thereby proposing its use as a probable bioindicator. Comparative study of a panel of classical endpoints (frond number and relative growth rate) and chlorophyll fluorescence parameters (Fo, Fm, NPQ, Fv/Fm and ETRmax) revealed that diuron caused maximum inhibition of increase in frond number. This coincided with the toxicity ranking obtained on the basis of RGRarea and RGRFW i.e. diuron>atrazine>simazine>glyphosate. The chlorophyll (chl)a fluorescence parameters revealed a concentration dependent decline in maximal fluorescence (Fm) in the plants exposed to diuron, atrazine and simazine; this decline was negligible in presence of glyphosate. Besides, an EC50 of 0.009 (0.008–0.010) mg/L was recorded in case of Fv/Fm of the diuron exposedLemna sp.; furthermore, the glyphosate exposed plant demonstrated EC50s>16 mg/L. ETRmax ofLemna sp. significantly (p<0.001) declined in presence of diuron, atrazine and simazine, whereas glyphosate did not cause any significant (p>0.05) reduction. A steady concentration-dependent decline in chl a fluorescence parameters ofLemna sp. (specifically Fv/Fm and ETRmax) as compared to the classical endpoints, demonstrated their superiority and sensitivity in detection of herbicides in the aquatic bodies. This study emphasizes on the probable use of chlorophyll fluorescence ofLemna sp. as a tool or bioindicator in evaluation of herbicides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Relyea, R. A. The impact of insecticides and herbicides on the biodiversity and productivity of aquatic communities.Ecol. Appl. 15, 618–627 (2005).

    Article  Google Scholar 

  2. Babu, T. S., Tripuranthakam, S. & Greenberg, B. M. Biochemical responses of the aquatic higher plantLemna gibba to a mixture of copper and 1,2-dihydroxyanthraquinone: Synergistic toxicity via reactive oxygen species.Environ. Toxicol. Chem. 24, 3030–3036 (2005).

    Article  PubMed  CAS  Google Scholar 

  3. Küster, A., Pohl, K. & Altenburger, R. A fluorescencebased bioassay for aquatic macrophytes and its suitability for effect analysis of non-photosystem II inhibitors.Env. Sci. Pol. Res. 14, 377–383 (2007).

    Article  Google Scholar 

  4. Jones, R. The ecotoxicological effects of Photosystem II herbicides on corals.Mar. Poll. Bull. 51, 495–506 (2005).

    Article  CAS  Google Scholar 

  5. Kida, T., Takano, S., Ishikawa, T. & Shibai, H. A simple bioassay for herbicidal substances of microbial origin by determining de novo starch synthesis in leaf segments.Agric. Biol. Chem. 49, 1299–1303 (1985).

    CAS  Google Scholar 

  6. Hulsen, K., Minne, V., Lootens, P., Vandecasteele, P. & Hofte M. A chlorophylla fluorescence-basedLemna minor bioassay to monitor microbial degradation of nanomolar to micromolar concentrations of linuron.Environ. Microbiol. 4, 327–337 (2002).

    Article  PubMed  CAS  Google Scholar 

  7. Lazar, D. & Naus, J. Statistical properties of chlorophyll fluorescence induction parameters.Photosynthetica.35, 121–128 (1998).

    Article  Google Scholar 

  8. Philippe, J., Baosheng, Q. & Charles, P. D. Use of chlorophyll fluorescence as a tool for determination of herbicide toxic effect: Review.Toxicol. Environ. Chem. 89, 609–625 (2007).

    Article  Google Scholar 

  9. Endo, R. & Omasa, K. Chlorophyll fluorescence imaging of individual algal cells: effects of herbicide onSpirogyra distenta at different growth stages.Environ. Sci. Technol. 38, 4165–4168 (2004).

    Article  PubMed  CAS  Google Scholar 

  10. Brain, R. S. & Solomon, K. R. A protocol for conducting 7-day daily renewal tests withLemna gibba.Nat. Protoc. 2, 979–987 (2007).

    Article  PubMed  CAS  Google Scholar 

  11. Claudia, S., Simon, M., Spranger, J. & Baumgartner, S. Test system stability and natural variability of aLemna gibba L.Bioassay PLoS ONE 3, e3133. doi: 10.1371/journal.pone.0003133 (2008).

    Article  Google Scholar 

  12. Schreiber, U. inPulse-Amplitude-Modulation (PAM) Fluorometry and Saturation Pulse Method: an Overview, Chlorophyll a Fluorescence: A Signature of Photosynthesis (eds Papageorgiou, G. C., Govindjee) 279–319 (Springer, Amsterdam, 2004).

    Google Scholar 

  13. Platt, T., Gallegosc, L. & Harrison, G. Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton.J. Mar. Res. 38, 687–701 (1980).

    Google Scholar 

  14. Sobrero, M. C., Rimoldi, F. & Ronco, A. E. Effects of the glyphosate active ingredient and a formulation onLemna gibba L. at different exposure levels and assessment end-points.Bull. Environ. Contam. Toxicol. 79, 537–543 (2007).

    Article  PubMed  CAS  Google Scholar 

  15. Frankart, C., Eullaffroy, P. & Vernet G. Comparative effects of four herbicides on non-photochemical fluorescence quenching inLemna minor.Environ. Exp. Bot. 49, 159–168 (2003).

    Article  CAS  Google Scholar 

  16. Kovach, J., Petzoldt, C., Degnil, J. & Tette, J. A method to measure the environmental impact of pesticides.New York’s Food Life Sci. Bull. 139: 1–8 (1992).

    Google Scholar 

  17. Vass, I., Turcsányi, E., Touloupakis, E., Ghanotakis, D. & Petrouleas, V. The mechanism of UV-A radiation-induced inhibition of photosystem II electron transport studied by EPR and chlorophyll fluorescence.Biochem. 41, 10200–10208 (2002).

    Article  CAS  Google Scholar 

  18. Ralph, P. J. Herbicide toxicity ofHalophila ovalis assessed by chlorophylla fluorescence.Aqua. Bot. 66, 141–152 (2000).

    Article  CAS  Google Scholar 

  19. Mitsou, K.et al. Growth rate effects, responses of antioxidant enzymes and metabolic fate of the herbicide Propanil in the aquatic plantLemna minor.Chemosphere 62, 275–284 (2006).

    Article  PubMed  CAS  Google Scholar 

  20. Fairchild, J. F., Ruessler, D. S., Haverland, P. S. & Carlson A. R. Comparative sensitivity ofSelenastrum capricornutum andLemna minor to sixteen herbicides.Arch. Environ. Contam. Toxicol. 32, 353–357 (1997).

    Article  PubMed  CAS  Google Scholar 

  21. Mazzeo, N., Dardano, B. & Marticornea, A. Interclonal variaiton in response to simazine stress inLemna gibba (Lemnaceae).Ecotoxicol. 7, 151–160 (1998).

    Article  CAS  Google Scholar 

  22. Teisseire, H., Couderchet, M. & Vernet, G. Phytotoxicity of diuron alone and in combination with copper or folpet on duckweed (Lemna minor).Environ. Poll. 106, 39–45 (1999).

    Article  CAS  Google Scholar 

  23. Michel, A., Johnson, R. D., Duke, S. O. & Scheffler, B. E. Dose-response relationships between herbicides with different modes of action and growth ofLemna paucicostata: An improved ecotoxicological method.Environ. Toxicol. Chem. 23, 1074–1079 (2004).

    Article  PubMed  CAS  Google Scholar 

  24. Marwood, C. A., Solomon K. R. & Bruce, M. G. Chlorophyll fluorescence as a bioindicator of effects on growth in aquatic macrophytes from mixtures of poly-cyclic aromatic hydrocarbons.Environ. Toxicol. Chem. 20, 890–898 (2001).

    Article  PubMed  CAS  Google Scholar 

  25. Robert, W. G., George, D. & Bruce, M. G. Using chlorophylla fluorescence to detect the onset of anthracene photoinduced toxicity inLemna gibba, and the mitigating effects of a commercial humic acid.Limnol. Oceanog. 44(3, Part 2), 878–888 (1999).

    Article  Google Scholar 

  26. Conrad, R.et al. Changes in yield in-vivo fluorescence of chlorophyll as a tool for selective herbicide monitoring.J. Appl. Phycol. 5, 505–516 (1993).

    Article  CAS  Google Scholar 

  27. Amrhein, N., Deus, B., Gehrke, P. & Steinruken, H. C. The site of the inhibition of the shikimate pathway by glyphosate.Plant Physiol. 66, 830–834 (1980).

    Article  PubMed  CAS  Google Scholar 

  28. Macedo, R. S., Lombardi, A. T., Omachi, C. Y. & Rorig, L. R. Effects of the herbicide bentazon on growth and photosystem II maximum quantum yield of the marine diatomSkeletonema costatum.Toxicol. in Vitro 22, 716–722 (2008).

    Article  PubMed  CAS  Google Scholar 

  29. Magnusson, M., Heimann, K. & Negri, A. P. Comparative effects of herbicides on photosynthesis and growth of tropical estuarine microalgae.Mar. Poll. Bull. 56, 1545–1552 (2008).

    Article  CAS  Google Scholar 

  30. Muller, R.et al. Rapid exposure assessment of PSII herbicides in surface water using a novel chlorophyll a fluorescence imaging assay.Sci. Total Env. 401, 51–59 (2008).

    Article  CAS  Google Scholar 

  31. Jones, R. J. & Kerswell, A. P. Phytotoxicity of photosystem II (PSII) herbicides to coral.Mar. Ecol. Prog. Ser. 261, 149–159 (2003).

    Article  CAS  Google Scholar 

  32. Gausman, M. A comparison of duckweed and standard algal phytotoxicity tests as indicators of aquatic toxicology. A practicum submitted to Miami University (Oxford, Ohio), 1–45 (2006).

    Google Scholar 

  33. Casida, J. E. Pest toxicology: the primary mechanisms of pesticide action.Chem. Res. Toxicol. 22, 609–619 (2009).

    Article  PubMed  CAS  Google Scholar 

  34. Hamilton, D. J.et al. Regulatory limits for pesticide residues in water.Pure Appl. Chem. 75, 1123–1155 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taejun Han.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, K.S., Han, T. Physiological response ofLemna species to herbicides and its probable use in toxicity testing. Toxicol. Environ. Health. Sci. 2, 39–49 (2010). https://doi.org/10.1007/BF03216512

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03216512

Keywords

Navigation