Skip to main content
Log in

Retardation of development and progression of coronary atherosclerosis: a new indication for calcium antagonists?

  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Summary

Development of atherosclerotic lesions in animals, preferrably induced by a high-cholesterol diet, can be successfully suppressed by calcium channel blockers such as verapamil, nifedipine, nicardipine and diltiazem.

The issue of a beneficial effect of calcium channel blockers on human coronary atherosclerosis is however not yet settled. At present, three prospective randomized clinical trials with calcium channel blockers (Nifedipine, Verapamil, Nicardipine) are being conducted (INTACT, FIPS, Study of theMontreal Heart Institute). Target variable for assessment of progression in these studies is the severity of coronary atherosclerosis evaluated by angiography both at entry into the study and after 2–3 years of treatment.

A total of 445 patients after coronary bypass surgery (CABG) were entered in FIPS (Frankfurt Isoptin Progression Study) and randomly allocated to either verapamil 120 mg t. i. d. or placebo. The extent of coronary atherosclerosis is assessed by repeat angiography both 1 year and 3 years after randomization. Three vessel regions are evaluated separately:

  1. 1.

    Native vessels without bypass grafts and segments distal to the peripheral graft anastomosis (“core region”)

  2. 2.

    Segments bridged by bypass grafts and

  3. 3.

    Bypass grafts.

The 1-year follow-up was completed by 162 patients (Group A = 80 patients; Group B = 82 patients). There was a homogeneous distribution in the two groups for all clinical variables, graft patency rates, and the incidence of clinical events (myocardial infarction, need for cardiac surgery or PTCA, cardiac death).

The overall progression rate of atherosclerosis in the first year was expectedly low.

Thus, the question of whether calcium channel blockers can retard the progression of coronary atherosclerosis will be answered after completion of the prospective trials. The analysis of the data of these studies must take into account that the natural history of coronary atherosclerosis is characterized by slow progression over time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Betz E, Hämmerle H, Kling D, Lenke D, Müller CD (1986) Wirkungen von Verapamil am Arteriosklerose-Modell. In: Rosenthal J (Hrsg) Calcium-Antagonisten und Hypertonie — Aktueller Stand. Excerpta Medica, Amsterdam, pp 83–97

    Google Scholar 

  2. Blumlein SL, Sievers R, Kidd P, Parmley WW (1984) Mechanism of protection from atherosclerosis by verapamil in the cholesterol-fed rabbit. Am J Cardiol 54: 884–889

    Article  PubMed  CAS  Google Scholar 

  3. Bruschke AVG, Wijers TS, Kolsters W, Landmann J (1981) The anatomic evolution of coronary artery disease demonstrated by coronary arteriography in 256 nonoperated patients. Circulation 63: 527–536

    PubMed  CAS  Google Scholar 

  4. Etingin OR, Hajjar DP (1985) Nifedipine increases cholesteryl ester hydrolytic activity in lipid-laden rabbit arterial smooth muscle cells: a possible mechanism for its antiatherogenic effect. J Clin Invest 75: 1554–1558

    Article  PubMed  CAS  Google Scholar 

  5. Fleckenstein A (1983) Calcium antagonism in heart and smooth muscle — Experimental facts and therapeutic prospects. Wiley and Sons, New York Chichester Brisbane Toronto Singapore, pp 323–329

    Google Scholar 

  6. Frey M, Keidel J, Fleckenstein A (1980) Verhütung experimenteller Gefäßverkalkungen (Mönckebergs Typ der Arteriosklerose) durch Calcium-Antagonisten bei Ratten. In: Fleckenstein A, Roskamm H (Hrsg) Calcium-Antagonismus. Springer, Berlin Heidelberg New York, pp 258–264

    Google Scholar 

  7. Frick MH, Valle M, Harjola PT (1983) Progression of coronary artery disease: a prospective angiographic study of medical and surgical patients. In: Roskamm H (Hrsg) Prognosis of coronary artery disease — Progression of coronary arteriosclerosis. Springer, Berlin Heidelberg New York, pp 177

    Google Scholar 

  8. Ginsburg R, Davis K, Bristow MR, McKennet K, Kodsi SR, Billingham ME, Schroeder J (1983) Calcium antagonists suppress atherogenesis in aorta but not in the intramural coronary arteries of cholesterol-fed rabbits. Lab Invest 49: 154–158

    PubMed  CAS  Google Scholar 

  9. Henry PD (1985) Atherosclerosis, calcium, and calcium antagonists. Circulation 72: 456–459

    PubMed  CAS  Google Scholar 

  10. Henry PD, Bentley KL (1981) Suppression of atherogenesis in cholesterol-fed rabbits with nifedipine. J Clin Invest 68: 1366–1369

    Article  PubMed  CAS  Google Scholar 

  11. Hornebeck W, Partridge SM (1975) Conformational changes in fibrous elastin due to calcium ions. Eur J Biochemistry 51: 73–78

    Article  CAS  Google Scholar 

  12. Hugenholtz PG, Lichtlen P, Van der Giessen W, Becker AE, Nayler WG, Fleckenstein A, Hülsmann WC (1986) On a possible role for calcium antagonists in atherosclerosis. A personal view. Eur Heart J 7: 546–559

    PubMed  CAS  Google Scholar 

  13. Johnson H (1981) Effects of nifedipine (adalat) on platelet function in vitro and in vivo. Thrombosis Res 21: 523–528

    Article  Google Scholar 

  14. Jost S, Deckers J, Nellessen U, Rafflenbeul W, Hecker H, Reiber JCH, Lippolt P, Hugenholtz PG, Lichtlen PR, INTACT-Studiengruppe (1989) Computergestützte geometrische Meßtechnik in koronarangiographischen Intervallstudien: Ergebnisse bei Erstangiogrammen der INTACT-Studie. Z Kardiol 78: 23–32

    PubMed  CAS  Google Scholar 

  15. Kaltenbach M (1975) Quantitative Bewertung koronarangiographischer Befunde mit Hilfe eines Punktsystems (Score). Z Kardiol 64: 597–606

    PubMed  CAS  Google Scholar 

  16. Kober G, Nickelsen T, Jakobs B, Kaltenbach M (1986) Der Einfluß einer Langzeittherapie mit Calciumantagonisten auf die Entwicklung der stenosierenden Koronarsklerose. In: Rosenthal J (Hrsg) Calcium-Antagonisten und Hypertonie — Aktueller Stand. Excerpta Medica, Amsterdam, pp 98–107

    Google Scholar 

  17. Kramsch DM, Aspen AJ, Rozler LJ (1981) Atherosclerosis: prevention by agents not affecting abnormal levels of blood lipids. Science 213: 1511–1512

    Article  PubMed  CAS  Google Scholar 

  18. Kummerow FA (1985) Lipoprotein responses and artery wall responses as factors affecting the development of atherosclerosis. Atherosclerosis. Ann NY Acad Sci 454: 46–51

    Article  PubMed  CAS  Google Scholar 

  19. Lichtlen PR, Nellessen U, Rafflenbeul W, Jost S, Hecker H (1987) International Nifedipine Trial on antiatherosclerotic therapy (INTACT). Cardiovasc Drugs Ther 1: 71–79

    Article  PubMed  CAS  Google Scholar 

  20. Lichtlen PR, Hugenholtz PG, Rafflenbeul W, Hecker H, Jost S, Deckers JW (1990) Retardation of angiographic progression of coronary artery disease by nifedipine. Results of the International Trial on Antiatherosclerotic Therapy (INTACT). Lancet 335: 1109–1113

    Article  PubMed  CAS  Google Scholar 

  21. Locher R, Neyses L, Stimpel M, Kueffer B, Vetter W (1984) The cholesterol content of the human erythrocyte influences calcium influx through the channel. Biochem Biophys Res Commun 124: 822–828

    Article  PubMed  CAS  Google Scholar 

  22. Metha J, Mehta P, Ostrowski N, Crews S (1983) Effects of verapamil on platelet aggregation, ATP release and thromboxane generation. Thromb Res 30: 469–475

    Article  Google Scholar 

  23. Mehta P, Metha J, Ostrowski N, Brigmon L (1983) Inhibitory effects of diltiazem on platelet activation caused by calcium ionophore A23187 plus ADP on epinehrine in subthreshold concentrations. J Lab Clin Med 102: 332–339

    PubMed  CAS  Google Scholar 

  24. Metcalfe JC, Moore JP, Smith GA; Hesketh TR (1986) Calcium and cell proliferation. Br Med Bull 42: 405–412

    PubMed  CAS  Google Scholar 

  25. Naito M, Kuzuya F, Asai K, Shibata K, Yoshimine N (1984) Ineffectiveness of Ca2 + -antagonists nicardipine and diltiazem on experimental atherosclerosis in cholesterol-fed rabbits. Atherosclerosis 35: 343–344

    Article  Google Scholar 

  26. Nayler WG (1988) Calcium antagonists and atherosclerosis. In: Nayler WG (Hrsg) Calcium antagonists. Academic press, London, pp 325–247

    Google Scholar 

  27. Nilsson J, Sjolund M, Palmberg L, Von Eulee AM, Jonzon B, Thyberg J (1985) The calcium antagonist nifedipine inhibits arterial smooth muscle proliferation. Atherosclerosis 58: 109–122

    Article  PubMed  CAS  Google Scholar 

  28. Ono H, Kimura M (1981) Effect of Ca+ +-antagonist vasodilators, diltiazem, nifedipine, perhexiline and verapamil, on platelet aggregation in vitro. Arzneim Forsch (Drug Res) 31: 1131–1134

    CAS  Google Scholar 

  29. Orekhov AN, Tertov VV, Khashimov KA, Kudyrashov SS, Smirnov VN (1987) Evidence of antiatherosclerotic action of verapamil from direct effect on arterial cells. Am J Cardiol 59: 495–496

    Article  PubMed  CAS  Google Scholar 

  30. Reiber JHC, Serruys PW, Kooijman CJ, Wijns W, Slager CJ, Gerbrands JJ, Schuurbiers JHC, den Boer A, Hugenholtz PG (1985) Assessment of short-, medium- and long-term variations in arterial dimensions from computer-assisted quantitation of of coronary cineangiograms. Circulation 71: 280–288

    PubMed  CAS  Google Scholar 

  31. Ross R (1981) Atherosclerosis: a problem of the biology of the arterial wall cells and their interactions with blood components. Arteriosclerosis 1: 293–311

    PubMed  CAS  Google Scholar 

  32. Ross R (1986) The pathogenesis of atherosclerosis — an update. N Engl J Med 314: 488–500

    Article  PubMed  CAS  Google Scholar 

  33. Ross R, Glomset JR (1976) The pathogenesis of atherosclerosis. N Engl J Med 295: 369–377

    Article  PubMed  CAS  Google Scholar 

  34. Ruegg UT, Doyle VM, Zuber JF, Hof RP (1985) A smooth muscle cell line suitable for the study of voltage sensitive calcium channels. Biochem Biophys Res Commun 130: 447–453

    Article  PubMed  CAS  Google Scholar 

  35. Rouleau JL, Parmley WW, Stevens J, Wikman-Coffelt J, Sievers R, Mahley RW, Havel RJ (1983) Verapamil suppresses atherosclerosis in cholesterol-fed rabbits. J Am Coll Cardiol 1: 1453–1460

    Article  PubMed  CAS  Google Scholar 

  36. Saito Y, Fujiyama Y, Shirai K, Yoshida S (1986) Effect of nifedipine on lipid metabolism in smooth muscle cells. In: Lichtlen PR (Hrsg) Proceedings of the 6th International Symposium on New Therapy of Ischemic Heart Disease and Hypertension. Excerpta Medica, Amsterdam, pp 480–483

    Google Scholar 

  37. Schwabedal PE, Oestreich W, Szathmary SCs (1989) Suppression der Koronarsklerose hypertoner Ratten durch Kalziumantagonisten ohne Senkung des hohen Blutdrucks. Z Kardiol 78 [Suppl 5]: 108–111

    PubMed  Google Scholar 

  38. Srinivasan S, Sawyer PM (1970) Rise of surface charge on blood vessel wall, blood cells and prosthetic materials in intravascular thrombosis, J Colloid Interface Sci 32: 456–463

    Article  PubMed  CAS  Google Scholar 

  39. Stein O, Leitersdorf E, Stein Y (1985) Verapamil enhances receptor-mediated endocytosis of low-density lipoproteins by aortic cells in culture. Arteriosclerosis 5: 35–44

    PubMed  CAS  Google Scholar 

  40. Stender S, Stender I, Nordestgaard B, Kjeldsen K (1984) No effect of nifedipine on atherogenesis in cholesterol-fed rabbits. Arteriosclerosis 4: 389–395

    PubMed  CAS  Google Scholar 

  41. Tilton GD (1985) Failure of the slow channel calcium antagonist, verapamil to retard atherosclerosis in the Watanabe heritable hyperlipidemic rabbit: an animal model of familial hypercholesterinemia. J Am Coll Cardiol 6: 141–144

    Article  PubMed  CAS  Google Scholar 

  42. Van Niekerk JLM, Hendriks T, De Boer HHM, Van’t Laar A (1984) Does nifedipine suppress atherogenesis in WHHL rabbits? Atherosclerosis 53: 91–98

    Article  PubMed  Google Scholar 

  43. Ware JA, Johnson PC, Smith M, Salzman EW (1986) Inhibition of human platelet aggregation and cytoplasmic calcium response by calcium antagonists: Studies with aequorin and Quin 2. Circ Res 59: 39–42

    PubMed  CAS  Google Scholar 

  44. Wartman A, Lampe TL, McCann DS, Boyle AJ (1967) Plaque reversal with MgEDTA in experimental atherosclerosis: elastin and collagen metabolism. J Atherosclerosis Res 7: 331–341

    Article  CAS  Google Scholar 

  45. Waters D, Freedman D, Lesperance J, Theroux P, Lemarbre L, Kamm B, Joyal M, Dyrda I, Gosselin G, Hudow G, Hache M, Halloran J, Havel RJ (1987) Design features of a controlled clinical trial to assess the effect of a calcium entry blocker upon the progression of coronary artery disease. Controlled Clin Trials 8: 216–242

    Article  PubMed  CAS  Google Scholar 

  46. Waters D, Lesperance J, Francetich M, Theroux P, Reitmann M, Hudon G, Lemarbre L, Kamm B, Joyal M, Gosselin G, Dyrda I, Havel R (1989) A controlled clinical trial to assess the effect of a calcium antagonist upon the progression of coronary atherosclerosis. Circulation 80 [Suppl II]: 266 (abstract)

    Google Scholar 

  47. Weinstein DB, Heider JG (1987) Antiatherogenic properties of calcium antagonists. Am J Cardiol 59: 163B-172B

    Article  PubMed  CAS  Google Scholar 

  48. Willis AL, Nagel B, Churchill V, Whyte MA, Smith DL, Mahmud I, Puppione D (1985) Anti-atherosclerotic effects of nicardipine and nifedipine in cholesterol-fed rabbits. Arteriosclerosis 5: 250–255

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schneider, W., Kober, G., Roebruck, P. et al. Retardation of development and progression of coronary atherosclerosis: a new indication for calcium antagonists?. Eur J Clin Pharmacol 39 (Suppl 1), S17–S23 (1990). https://doi.org/10.1007/BF03216270

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03216270

Key words

Navigation