Skip to main content
Log in

Seasonal influx and decomposition of autochthonous macrophyte litter in a north temperate estuary

Hydrobiologia Aims and scope Submit manuscript

Abstract

An 18-month study was undertaken to determine the seasonal contribution and detrital processing of autochthonous plant litter in the Great Bay Estuary System of New-Hampshire-Maine, USA and adjacent open coast. Four species were studied: the halophytes, Spartina alterniflora Loisel. and Zostera marina L. and the seaweeds, Ascophyllum nodosum (L.) Le Jolis and Fucus vesiculosus L. v. spiralis Farlow. Monthly strand line collections at estuarine and open coastal sites provided information on the seasonal influx of litter derived from each species. Detrital inputs from S. alterniflora and Z. marina were maximal in the spring and summer, respectively. Seaweed litter was abundant (35 to 85% of the total strand line) throughout the year. The seaweeds contributed 1 to 3 times as much detrital material as the vascular plants within the Estuary, and 50 times as much on the open coast. In situ measurements of decomposition, using nylon, mesh bags, were made for each species under several environmental conditions. Seaweeds decomposed 3 to 10 times faster than vascular plant litter under similar conditions. Decomposition rates and changes in the nutrient content of litter were dependent on surrounding environmental conditions. Continual nutrient depletion occurred in litter within the strand line. Nitrogen and phosphorus enrichment were observed under submerged conditions and were attributed to microbial activity and rapid leaching of carbonaceous substrates. A computer simulation model was developed to validate the field data and to predict seasonal detrital carbon input by each species. The significance of autochthonous input is discussed in relation to other detrital sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Institutional subscriptions

References

  • Brinkhuis, B. H. 1977. Comparisons of salt marsh fucoid production estimated from three different indices. J. Phycol. 13: 328–335.

    Article  Google Scholar 

  • Celikkol, B. & Reichard, R. 1976. 10750odynamic model of the Great Bay Estuarine System. Mechanics Res. Lab. 107 p. Available from: Univ. New Hampshire Sea Grant, Durham, NH; UNH-SG-153.

    Google Scholar 

  • Chock, J. S. 1975. Ecological study of the salt marsh ecad scorpioides (Hornemann) Hauck of Ascophyllum nodosum (L.) Le Jolis, Durham, NH: Univ. New Hampshire 108 p. Dissertation.

    Google Scholar 

  • Cruz. A. A. de la. 1975. Proximate nutritive value changes during decomposition of salt marsh plants. 10750obiologia 47: 475–480.

    Article  Google Scholar 

  • Fenchel, T. M. & Jorgensen, B. B. 1977. Detritus food chains of aquatic ecosystems: the role of bacteria. Alexander, M. ed. Advances in microbial ecology. Vol. 1. New York: Plenum, Press: 1–58.

    Google Scholar 

  • Frankland, J. C. 1974. Decomposition of lower plants. Dickinson, C. H.; Pugh, G. J. F. eds. Biology of plant litter decomposition. Vol. 1. London: Academic Press: 3–36.

    Chapter  Google Scholar 

  • Gerard, V. A. 1976. Some aspects of material dynamics and energy flow in a kelp forest in Monterey Bay, Ca. Santa Cruz, CA: Univ. California; 173 p. Dissertation.

    Google Scholar 

  • Heald, E. J. 1971. The production of organic detritus in a south Florida estuary. Sea Grant Technical Bull. 6., 110 pp. Available from: Univ. Miami Sea Grant, Coral Gables, FL.

    Google Scholar 

  • Hehre, E. J. & Mathieson, A. C. 1970. Investigations of New England marine algae. III. Composition, seasonal occurrence and reproductive periodicity of the marine Rhodophyceae in New Hampshire. Rhodora 72: 194–239.

    Google Scholar 

  • Heinle, D. R. & Flemer, D. A. 1976. Flows ofmatenals between poorly flooded tidal marshes and an estuary. Mar. BioI. 35: 359–373.

    Article  Google Scholar 

  • Hodkinson, I. D. 1975. Energy flow and organic matter decomposition in an abandoned beaver pond ecosystem. Oecologia 21: 131–139..

    Article  CAS  PubMed  Google Scholar 

  • Hunter, R. D. 1976. Changes in carbon and nitrogen content during decomposition of three macrophytes in freshwater and marine environments. 10750obiologia 51: 119–128.

    Article  Google Scholar 

  • Jenny, H., Gessel, S. P. & Bingham, F. T. 1949. Comparative study of decomposition rates of organic matter in temperate and tropical regions. Soil Sci. 68: 419–432.

    Article  CAS  Google Scholar 

  • Josselyn, M. N. 1978. The contribution of marine macrophytes to the detrital pool of the Great Bay Estuary System, NH. Durham NH: Univ. New Hampshire, 142 p. Dissertation.

    Google Scholar 

  • Khailov, K. M. & Burlakova, Z. P. 1969. Release of dissolved organic matter by marine seaweeds and distribution of their total organic production to inshore communities. Limnol. Oceanogr. 14: 521–527.

    Article  Google Scholar 

  • Mann, K. H. 1972. Macrophyte production and dctritus food chains in coastal waters. Mem. 1st. Ital. Idrobiol. 29 (S): 353–383.

    Google Scholar 

  • Niemeck, R. A. & Mathieson, A. C. 1976. An ecological study of Fucus spiralis L. J. expo mar. BioI. Ecol. 25: 273–284.

    Google Scholar 

  • Norall, T. L. & Mathieson, A. C. 1976. Nutrient and 10750odynamic data for the Great Bay Estuarine System and the adjacent open coast of New Hampshire. Jackson Estuarine Lab. 88 p. Available from: Univ. New Hampshire, Durham, NH.

    Google Scholar 

  • Odum, E. P. & Cruz, A. A. de lao 1967. Particulate detritus in a Georgia saltmarsh-estuarine ecosystem. Lauff, G. H. ed. Estuaries. Washington: Amer. Assoc. Adv. Sci.: 383–388.

    Google Scholar 

  • Olson, J. S. 1963. Energy storage and the balance of producers and decomposers in ecological systems. Ecology 44: 322–331.

    Article  Google Scholar 

  • Park, D. 1974. On the use of the litter bag method for studying degradation in aquatic habitats. Int. Biodetn. Bull. 10: 45–48.

    Google Scholar 

  • Perkins, E. J. 1974. The marine environment. Dickinson, C. H.; Pugh, G. J. F. eds. Biology of plant litter decomposition. Vol. 2. London: Academic Press; 683–721.

    Google Scholar 

  • Post, H. A. & Cruz, A. A. de lao 1977. Litterfall, litter decomposition, and flux of particulate organic material in a coastal plain stream. 10750obiologia 55: 201–207.

    Article  CAS  Google Scholar 

  • Reimold, R. S., Gallagher, S. L., Linthurst, R. A. & Pfeiffer, W. J. 1975. Detritus production in coastal Georgia salt marshes. Cronin, L. E. ed. Estuarine Research. Vol. 1. New York: Academic Press: 217–228.

    Google Scholar 

  • Riggs, S. A. & Fralick, R. A. 1975. Zostera marina L., its growth and distribution in the great Bay Estuary, NH. Rhodora 77: 456–466.

    Google Scholar 

  • Russell-Hunter, W. D. 1970. Aquatic productivity: an introduction to some basic aspects of biological oceanography and limnology 306 p. London: Collier-Macmilliam.

    Google Scholar 

  • Sand-Jensen, K. 1975. Biomass. net production and growth dynamics in an eelgrass (Zostera marina L.) population in Vellerup Vig. Denmark,. Ophelia 14: 185–201.

    Article  Google Scholar 

  • Skopintzev, B. & Brook, E. A. 1940. A study of the oxidation processes occurring in water during the aerobic decomposition of phytoplankton. Mikrobiologiya 9: 595–607.

    Google Scholar 

  • Smith, F. E. 1951. Tetrazolium salt. Science 113: 751–754.

    Article  CAS  PubMed  Google Scholar 

  • Strickland, J. D. H. & Parsons, T. R. 1968. A practical handbook of seawater analysis. Fish. Res. Bd. Can. Bull. 167: 311 p.

    Google Scholar 

  • Tenore, K. R. 1977a. Growth of the polychaete, Capitella capitata cultured on different levels of detritus derived from various sources. LimnoL Oceanogr. 22: 936–941.

    Article  Google Scholar 

  • Tenore, K. R. 1977b. Utilization of aged detritus derived from different sources by the polychaete Capitella capitata. Mar. Biol. 44:51–555.

    Article  Google Scholar 

  • Thayer, G. W., Engel, D. W. & LaCroix, M. W. 1977. Seasonal distribution and changes in the nutritive quality ofliving, dead, and detrital fractions of Zostera marina L. J. exp. mar.. BioI. Ecol. 30: 109–127.

    Article  CAS  Google Scholar 

  • U.S. Dept. Interior. 1974. Water resources data for Massachusetts, New Hampshire, Rhode Island, and Vermont. Boston: U.S. Geological Survey. Boston, MA.

    Google Scholar 

  • Wiegert, R. G. & Evans, F. C. 1964. Primary production and the disappearance of dead vegetation on an old field in southeastern Michigan. Ecology 45: 49–63.

    Article  Google Scholar 

  • Woodwell, G. M., Whitney, D. E., Hall, C. A. S. & Houghton, R. A. 1977. The Flax Pond ecosystem: Exchange of carbon in water between a salt marsh and Long Island Sound. Limnol. Oceanogr. 22: 833–838.

    Article  CAS  Google Scholar 

  • Zedler, J., Winfield, T. & Mauriello, D. 1978. Primary productivity in a So. California estuary. Coastal Zone '78. New York: Am. Soc. Civil. Eng.: 649–662.

    Google Scholar 

  • Zingmark, R. G., Wohlgemuth, S., Wagner, G. L., Vennewitz, M. K., Reis, R. R., Hall, M. O., Ebeling, D. E. & Brown, D. C. 1977. Ecology ofmaeroalgae in a temperate salt marsh. I. Biomass and productivity of intertidal species. J. Phycol. 13 (S): 77.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Published with the approval of the Director of the Agriculture Experiment Station as Scientific Contribution No. 954 and as Jackson Estuarine Laboratory Contribution No. 74

Rights and permissions

Reprints and permissions

About this article

Cite this article

Josselyn, M.N., Mathieson, A.C. Seasonal influx and decomposition of autochthonous macrophyte litter in a north temperate estuary. Hydrobiologia 71, 197–208 (1980). https://doi.org/10.1007/BF03216236

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03216236

Keywords

Navigation