Skip to main content
Log in

Isolation and molecular characterization of the porcineSLC6A14 gene excludes it as a candidate gene for fat deposition and growth

  • Original Article
  • Published:
Journal of Applied Genetics Aims and scope Submit manuscript

Abstract

The gene encoding solute carrier family 6 member 14 (SLC6A14) has been considered as a candidate gene affecting human obesity. In this study, full-length cDNA (2237 bp) and DNA sequence (24 541 bp) of the porcineSLC6A14 gene were isolated. The porcineSLC6A14 cDNA contains a 5’-untranslated region of 57 bp, a 3’-untranslated region of 254 bp, and an open reading frame of 1926 bp, encoding a deduced protein of 642 amino acids with a molecular mass of 72. 475 kDa and an isoelectric point of 7.82. The genomic structure of the porcineSLC6A14 gene is similar to mammalian orthologs, particularly in terms of exon size and exon/intron boundaries. It comprises 14 exons and 13 introns. A semi-quantitative RT-PCR showed that the porcineSLC6A14 mRNA expression was tissue-specific. FourSLC6A14 single-nucleotide polymorphisms (SNPs) were identified, and 3 informative SNPs were chosen for genotyping in a White Duroc × Erhualian resource population with phenotype data of growth and fatness traits. The association analysis showed that the c.1438 G>A nonsynonymous polymorphism was associated with birth weight and 21-day body weight (P<0.05), while g.7944 A>T was associated with 46-day body weight. Linkage and radiation hybrid mapping assignedSLC6A14 to a region aroundSW1522 on SSCXp13, which did not fall in the confidence interval of the quantitative trait locus (QTL) for growth and fatness traits on SSCX in the resource population. These results indicate thatSLC6A14 is not a positional candidate gene for the QTL affecting fatness and growth traits in pigs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Battersby S, Ogilvie AD, Blackwood DHR, Shen S, Muqit MMK, Muir WJ, et al. 1999. Presence of multiple functional polyadenylation signals and a single nucleotide polymorphism in the 3’ untranslated region of the human serotonin transporter gene. J Neurochem 72: 1384–1388.

    Article  CAS  PubMed  Google Scholar 

  • Bidanel JP, Milan D, Iannuccelli N, Amigues Y, Boscher MY, Bourgeois F, et al. 2001. Detection of quantitative trait loci for growth and fatness in pigs. Genet Sel Evol 33: 289–309.

    Article  CAS  PubMed  Google Scholar 

  • Cepica S, Rohrer GA, Masopust M, 2002. Gene linkage mapping of the porcine chromosome X region harbouring QTL for fat deposition. In: XXVIII International Conference on Animal Genetics, Göttingen: 87–88.

  • Cepica S, Reiner G, Bartenschlager H, Moser G, Geldermann H, 2003. Linkage and QTL mapping forSus scrofa chromosome X. J Anim Breed Genet 120: 144–151.

    Article  CAS  Google Scholar 

  • Chen NH, Reith MEA, Quick MW, 2004. Synaptic uptake and beyond: the sodium and chloride-dependent neurotransmitter transporter family SLC6. Pflügers Arch-Eur J Physiol 447: 519–531.

    Article  CAS  Google Scholar 

  • Durand E, Boutin P, Meyre D, Charles MA, Clement K, Dina C, et al. 2004. Polymorphisms in the amino acid transporter solute carrier family 6 (neurotransmitter transporter) member 14 gene contribute to polygenic obesity in French Caucasians. Diabetes 53: 2483–2486.

    Article  CAS  PubMed  Google Scholar 

  • Fukasawa KM, Li WH, Yagi K, Luo CC, Li SSL, 1986. Molecular evolution of mammalian lactate dehydrogenase-A genes and pseudogenes: association of a mouse-processed pseudogene with a B1 repetitive sequence. Mol Biol Evol 3: 330–342.

    CAS  PubMed  Google Scholar 

  • Guo YM, Mao HR, Ren J, Yan XM, Duan YY, Yang GC, et al. 2009. A linkage map of the porcine genome from a large-scale White Duroc×Erhualian resource population and evaluation of factors affecting recombination rates. Anim Genet 40: 47–52.

    Article  PubMed  Google Scholar 

  • Harlizius B, Rattink AP, de Koning DJ, Faivre M, Joosten RG, van Arendonk JAM, et al. 2000. The X chromosome harbors quantitative trait loci for backfat thickness and intramuscular fat content in pigs. Mamm Genom 11: 800–802.

    Article  CAS  Google Scholar 

  • Höglund PJ, Adzic D, Scicluna SJ, Lindblom J, Fredriksson R, 2005. The repertoire of solute carriers of family 6: Identification of new human and rodent genes. Biochem Biophys Res Commun 336: 175–189.

    Article  PubMed  Google Scholar 

  • Kumar S, Tamura K, Nei M, 2004. MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5: 150–163.

    Article  CAS  PubMed  Google Scholar 

  • Lande R, 1981. The minimum number of gene contributing to qualitative variation between and within populations. Genetics 99: 541–553.

    CAS  PubMed  Google Scholar 

  • Laspiur JP, Burton JL, Weber PSD, 2004. Amino acid transporters in porcine mammary gland during lactation. J Dairy Sci 87: 3235–3237.

    Article  CAS  PubMed  Google Scholar 

  • McCoard SA, Fahrenkrug SC, Alexander LJ, Freking BA, Rohrer GA, Wise TH, et al. 2002. An integrated comparative map of the porcine X chromosome. Anim Genet 33: 178–185.

    Article  CAS  PubMed  Google Scholar 

  • Milan D, Bidanel JP, Iannuccelli N, Riquet J, Amigues Y, Gruand J, et al. 2002. Detection of quantitative trait loci for carcass composition traits in pigs. Genet Sel Evol 34: 705–728.

    Article  CAS  PubMed  Google Scholar 

  • Nakanishi T, Hatanaka T, Huang W, Prasad PD, Leibach FH, Ganapathy ME, et al. 2001. Na+− and Cl-coupled active transport of carnitine by the amino acid transporter ATB0,+ from mouse colon expressed in HRPE cells andXenopus oocytes. J Physio 532: 297–304.

    Article  CAS  Google Scholar 

  • Niesler B, Frank B, Kapeller J, Rappold GA, 2003. Cloning, physical mapping and expression analysis of the human 5-HT3 serotonin receptor-like genes HTR3C, HTR3D, and HTR3E. Gene. 310: 101–111.

    Article  CAS  PubMed  Google Scholar 

  • Öhman M, Oksanen L, Kaprio J, Koskenvuo M, Mustajoki P, Rissanen A, et al. 2000. Genome-wide scan of obesity in Finnish sibpairs reveals linkage to chromosome Xq24. J Clin Endocrinol Metab 85: 3183–3190.

    Article  PubMed  Google Scholar 

  • Rohrer GA, Keele JW, 1998a. Identification of quantitative trait loci affecting carcass composition in swine: I. Fat deposition traits. J Anim Sci 76: 2247–2254.

    CAS  PubMed  Google Scholar 

  • Rohrer GA, Keele JW, 1998b. Identification of quantitative trait loci affecting carcass composition in swine: II. Muscling and wholesale product yield traits. J Anim Sci 76: 2255–2263.

    CAS  PubMed  Google Scholar 

  • Rohrer GA, Thallman RM, Shackelford S, Wheeler T, Koohmaraie M, 2006. A genome scan for loci affecting pork quality in a Duroc-Landrace F2 population. Anim Genet 37: 17–27.

    Article  CAS  PubMed  Google Scholar 

  • Sloan JL, Mager S, 1999. Cloning and functional expression of a human Na+ and Cl-dependent neutral and cationic amino acid transporter B0+. J Biol Chem 274: 23740–23745.

    Article  CAS  PubMed  Google Scholar 

  • Suviolahti E, Oksanen LJ, Ohman M, Cantor RM, Ridderstrale M, Tuomi T, et al. 2003. TheSLC6A14 gene shows evidence of association with obesity. J Clin Invest 112: 1762–1772.

    CAS  PubMed  Google Scholar 

  • Wu L, Ueda T, Messing J, 1993. 3’-end processing of the maize 27 kDa zein mRNA. Plant J 4: 535–544.

    Article  CAS  PubMed  Google Scholar 

  • Yerle M, Pinton P, Robic A, Alfonso A, Palvadeau Y, Delcros C, et al. 1998. Construction of a whole-genome radiation hybrid panel for high-resolution gene mapping in pigs. Cytogenet Cell Genet 82: 182–188.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. L. Yang.

Additional information

Both authors contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, G.L., Ren, J., Zhang, S.H. et al. Isolation and molecular characterization of the porcineSLC6A14 gene excludes it as a candidate gene for fat deposition and growth. J Appl Genet 51, 299–308 (2010). https://doi.org/10.1007/BF03208859

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03208859

Keywords

Navigation