Skip to main content
Log in

Use of chromosome walking in discovery of single-nucleotide polymorphism in noncoding regions of a candidateactin gene inPinus radiata

  • Original Article
  • Published:
Journal of Applied Genetics Aims and scope Submit manuscript

Abstract

Untranslated regions (UTRs) of eukaryotic mRNAs play crucial roles in post-transcriptional regulation of gene expression via the modulation of nucleocytoplasmic mRNA transport, translation efficiency, subcellular localization, and message stability. Single-nucleotide polymorphisms (SNPs) in UTRs of a candidate gene may also change the post-transcriptional regulation of a gene or function by nucleotide mutation. For species that have not been entirely sequenced genomically, new methods need to be devised to discover SNPs in noncoding regions of candidate genes. In this study, based on the expressed sequence tag (EST) ofPinus radiata (Monterey pine), we obtained all the sequences of UTRs of theactin gene by using a chromosome walking method. We also detected all the SNPs in and around the coding region of theactin gene. In this way, the full genomic sequence (2154 bp) of theactin gene was identified, including the 5’UTR, introns, the coding sequence, and the 3’UTR. PCR amplification and DNA fragment sequencing from 200 unrelatedP. radiata trees revealed a total of 21 SNPs in theactin gene, of which 3 were located in the 5’UTR, 3 in the introns, 10 in the coding sequence, and 5 in the 3’UTR. We show that chromosome walking can be used for obtaining the sequence of UTRs, and then, based on this sequence, to discover SNPs in the noncoding regions of candidate genes from this species without an entire genomic sequence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bashirullah A, Cooperstock RL, Lipshitz HD, 2001. Spatial and temporal control of RNA stability. Proc Natl Acad Sci USA 98: 7025–7028.

    Article  CAS  PubMed  Google Scholar 

  • Bodaño A, González A, Ferreiros-Vidal I, Balada E, Ordi J, Carreira P, et al. 2006. Association of a non-synonymous single- nucleotide polymorphism ofDNASEI with SLE susceptibility. Rheumatology 45: 819–823.

    Article  PubMed  Google Scholar 

  • Chasman D, Adams RM, 2001. Predicting the functional consequences of non-synonymous single nucleotide polymorphisms: structure based assessment of amino acid variation. J Mol Biol 307: 683–706.

    Article  CAS  PubMed  Google Scholar 

  • Doyle JJ, Doyle JL, 1990. Isolation of plant DNA from fresh tissue. Phys Rev Focus 12: 13–15.

    Google Scholar 

  • Feltus FA, Wan J, Schulze SR, Estill JC, Jiang N, Paterson AH, 2004. A SNP resource for rice genetics and breeding based on subspeciesindica andjaponica genome alignments. Genome Res 14: 1812–1819.

    Article  CAS  PubMed  Google Scholar 

  • Frova C, 2003. The plant glutathione transferase gene family: genomic structure, functions, expression and evolution. Physiologia Plantarum 119: 469–479.

    Article  CAS  Google Scholar 

  • Giordano M, Oefner PJ, Underhill PA, Cavalli-Sforza L, Tosi R, Richiardi PM, 1999. Identification by denaturing high-performance liquid chromatography of numerous polymorphisms in a candidate region for multiple sclerosis susceptibility. Genomics 56: 247–253.

    Article  CAS  PubMed  Google Scholar 

  • Heaton MP, Harhay GP, Bennett GL, Stone RT, Grosse WM, Casas E, et al. 2002. Selection and use of SNP markers for animal identification and paternity analysis in U.S. beef cattle. Mammalian Genome 13: 272–281.

    Article  CAS  PubMed  Google Scholar 

  • Heslop-Harrison JS, 2000. Comparative genome organization in plants: from sequence and markers to chromatin and chromosomes. Plant Cell 12: 617–635.

    Article  CAS  PubMed  Google Scholar 

  • Ingvarsson PK, Garcia MV, Luquez V, Hall D, Jansson S, 2008. Nucleotide polymorphism and phenotypic associations within and around thephytochrome B2 locus in European aspen (Populus tremula, Salicaceae). Genetics 178: 2217–2226.

    Article  CAS  PubMed  Google Scholar 

  • Jansen RP, 2001. mRNA localization: message on the move. Nat Rev Mol Cell Biol 2: 247–256.

    Article  CAS  PubMed  Google Scholar 

  • Kimchi-Sarfaty C, Oh JM, Kim I-W, Kim IW, Sauna ZE, Calcagno AM, et al. 2007. A silent polymorphism in the MDR1 gene changes substrate specificity. Science 315: 525–528.

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Tamura K, Nei M, 2004. MEGA3: Integrated software for molecular evolutionary genetics analy-sis and sequence alignment. Brief Bioinform 5: 150–163.

    Article  CAS  PubMed  Google Scholar 

  • Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, et al. 2001. Initial sequencing and analysis of the human genome. Nature 409: 860–921.

    Article  CAS  PubMed  Google Scholar 

  • Mignone F, Gissi C, Liuni S, Pesole G, 2002. Untranslated regions of mRNAs. Genome Biology 3: reviews 0004.1–0004.10.

    Article  Google Scholar 

  • Ng PC, Henikoff S, 2001. Predicting deleterious amino acid substitutions. Genome Res 11: 863–874.

    Article  CAS  PubMed  Google Scholar 

  • Paterson AH, Bowers JE, Peterson DG, Estill JC, Chapman BA, 2003. Structure and evolution of cereal genomes. Curr Opin in Genet Deve 13:644–650.

    Article  CAS  Google Scholar 

  • Ren M, Chen Q, Li L, Zhang R, Guo S, 2005. Successive chromosome walking by compatible ends ligation inverse PCR. Mol Biotechnol 30: 95–102.

    Article  CAS  PubMed  Google Scholar 

  • Rozas J, Sánchez-DelBarrio JC, Messegure X, Rozas R, 2003. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19: 2496–2497.

    Article  CAS  PubMed  Google Scholar 

  • Sanger F, Nicklen S, Coulson AR, 1977. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74: 5463–5467.

    Article  CAS  PubMed  Google Scholar 

  • Shopinski KL, Iqbal MJ, Shultz JL, Jayaraman D, Lightfoot DA, 2006. Development of a pooled probe method for locating small gene families in a physical map of soybean using stress related paralogues and a BAC minimum tile path. Plant Methods 2: 20.

    Article  PubMed  Google Scholar 

  • Skøt L, Humphreys J, Humphreys MO, Thorogood D, Gallagher J, Sanderson R, 2007. Association of candidate genes with flowering time and water-soluble carbohydrate content in Lolium perenne (L.). Genetics 177: 535–547.

    Article  PubMed  Google Scholar 

  • Sunyaev S, Ramensky V, Koch I, Lathe W 3rd, Kondrashov AS, Bork P, 2001. Prediction of deleterious human alleles. Hum Mol Genet 10: 591–597.

    Article  CAS  PubMed  Google Scholar 

  • Thumma BR, Nolan MF, Evans R, Moran GF, 2005. Polymorphisms inCinnamoyl CoA Reductase (CCR) are associated with variation in microfibril angle inEucalyptus spp. Genetics 171: 1257–1265.

    Article  CAS  PubMed  Google Scholar 

  • Van der Velden AW, Thomas AA, 1999. The role of the 5-untranslated region of anmRNAin translation regulation during development. Int J Biochem Cell Biol 31: 87–106.

    Article  PubMed  Google Scholar 

  • Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, et al. 2001. The sequence of the human genome. Science 291: 1304–1351.

    Article  CAS  PubMed  Google Scholar 

  • Wang DG, Fan JB, Siao CJ, Berno A, Young P, Sapolsky R, et al. 1998. Large-scale identification, mapping and genotyping of single-nucleotide polymorphisms in the human genome. Science 280: 1077–1082.

    Article  CAS  PubMed  Google Scholar 

  • Zhu YL, Song QJ, Hyten DL, Van Tassell CP, Matukumalli LK, Grimm DR, et al. 2003. Single nucleotide polymorphisms in soybean. Genetics 163: 1123–1134.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X-Y Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, W., Li, H., Wu, H. et al. Use of chromosome walking in discovery of single-nucleotide polymorphism in noncoding regions of a candidateactin gene inPinus radiata . J Appl Genet 51, 275–281 (2010). https://doi.org/10.1007/BF03208856

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03208856

Keywords:

Navigation