Skip to main content
Log in

Possible ancient origin of heterochromatic JNK sequences in chromosomes 2R ofSecale vavilovii Grossh

  • Original Article
  • Published:
Journal of Applied Genetics Aims and scope Submit manuscript

Abstract

Employing FISH analysis as well as BLAST and CUSTAL W (1.82) programs, we investigated types of DNA nucleotide sequences building an additional heterochromatic band in 2R chromosomes of 3 lines ofSecale vavilovii Grossh. The probes used in FISH analysis were designed based on the reverse transcriptase sequence of Ty1-copia and Ty3-gypsy retrotransposons and the 5S rRNA gene sequence. No hybridization signals from the reverse transcriptase probes were observed in the chromosome region where the additional band occurs. On the other hand, signals were observed after hybridization with the 5S rDNA probe, clearly suggesting the presence of that type of sequences in the analyzed heterochromatin band. Using BLAST and CUSTAL W programs, we revealed high similarity of the JNK1 sequence to the 5S rRNA gene fromHordeum chilense (HCH1016, HCH1018, 88%) and to a fragment of the 5S rRNA sequence ofH. marinum (HMAR003, 97%). In addition, the same fragment of JNK1 was shown to be very similar to the part of theAngela retrotransposon (92%) as well as to theSNAC 426K20-1 transposon (89%) belonging to CACTA family, both fromTriticum monococcum, and toZingeria biebersteiniana pericentromeric sequences (78%). The similarity of JNK1 to those sequences may be accidental or the JNK1 may represent an ancient mobile genetic element that caught the 5S rRNA sequence. During the evolution those sequences might have been accumulated in the particular region on the 2R chromosome. Our results suggest that the additional heterochromatin band in chromosomes 2R ofS. vavilovii is a collection of defective genes and/or mobile genetic elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Achrem M, Kalinka A, Rogalska SM, 2005. Localization of the gene coding the transposase of maize Ac/Ds system on rye chromosomes (Secale vavilovii Grossh. andS. cereale L.) by FISH. In: Variability and evolution: new perspectives, W. Prus-Głowacki, E. Pawlaczyk, eds. 499–505; Adam Mickiewicz University Press, Poznań.

    Google Scholar 

  • Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, et al. 2000. The genome sequence ofDrosophila melanogaster. Science 287: 2185–2195.

    Article  PubMed  Google Scholar 

  • Almeida K, Allshire RC, 2005. RNA silencing and genome regulation. Trends Cell Biol 15: 251–258.

    Article  CAS  PubMed  Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ, 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25: 3389–3402.

    Article  CAS  PubMed  Google Scholar 

  • Appels R, Driscoll C, Peacock WJ, 1978. Heterochromatin and highly repeated DNA sequences in rye (Secale cereale). Chromosoma 70: 67–89.

    Article  CAS  Google Scholar 

  • Bedbrook JR, Jones J, O’DellM, Thompson RD, Flavell RB, 1980. A molecular description telomeric heterochromatin inSecale species. Cell 19: 545–560.

    Article  CAS  PubMed  Google Scholar 

  • Bennett MD, Gustafson JP, Smith JB, 1977. Variation in nuclear DNA in the genusSecale. Chromosoma 61: 149–176.

    Article  CAS  Google Scholar 

  • Bennetzen JL, 2000. Transposable element contributions to plant gene and genome evolution. Plant Molecular Biology 42: 251–269.

    Article  CAS  PubMed  Google Scholar 

  • Chopra S, Brendel V, Zhang J, Axtell JD, Peterson T, 1999. Molecular characterization of a mutable pigmentation phenotype and isolation of the first active transposable element fromSorghum bicolor. Proc Natl Acad Sci USA 96: 15330–15335.

    Article  CAS  PubMed  Google Scholar 

  • Csink K, Henikoff S, 1998. Something from nothing: the evolution and utility of satellite repeats. Trends Genet. 14: 200–204.

    Article  CAS  PubMed  Google Scholar 

  • Dimitri P, Junakovic N, 1999. Revising the selfish DNA hypothesis: new evidence on accumulation of transposable elements in heterochromatin. Trends Genet. 15: 123–124.

    Article  CAS  PubMed  Google Scholar 

  • Douet J, Tourmente S, 2007. Transcription of the 5S rRNA heterochromatic genes is epigenetically controlled inArabidopsis thaliana andXenopus laevis. Heredity 99: 5–13.

    Article  CAS  PubMed  Google Scholar 

  • Dover GA, 1986. Molecular drive in multigene families: how biological novelties arise, spread and are assimilated. Trends Genet 2: 159–165.

    Article  CAS  Google Scholar 

  • Feuillet C, Penger A, Gellner K, Mast A, Keller B, 2001. Molecular evolution of receptor-like kinase genes in hexaploid wheat: independ entevolution of orthologs after polyploidization and mechanisms of local rearrangements at paralogous loci. Plant Physiol 125: 1304–1313.

    Article  CAS  PubMed  Google Scholar 

  • Flavell RB, 1986. Repetitive DNA and chromosome evolution in plants. Philos. Trans. R. Soc. Lond. B Biol. Sci. 312: 227–242.

    Article  CAS  PubMed  Google Scholar 

  • Flavell AJ, Smith DB, Kumar A, 1992. Extreme heterogeneity of Ty1-copia group retrotransposons in plants. Mol Gen Genet. 231: 233–242.

    CAS  PubMed  Google Scholar 

  • Friesen N, Brandes A, Heslop-Harrison J, 2001. Diversity, origin and distribution of retrotransposons in conifers. Mol Biol Evol 18: 1176–1188.

    CAS  PubMed  Google Scholar 

  • Fukui KN, Suzuki G, Lagudah ES, Rahman S, Appels R, Yamamoto M, Mukai Y, 2001. Physical arrangement of retrotransposon-related repeats in centromeric regions of wheat. Plant Cell Physiol 42: 189–196.

    Article  CAS  PubMed  Google Scholar 

  • Gill B, Kimber G, 1974. The Giemsa-C-banded karyotype of rye. Proc Nat Acad Sci USA 71: 1247–1249.

    Article  CAS  PubMed  Google Scholar 

  • Hancock JM, 1996. Simple sequences and the expanding genome. BioEssays 18: 421–425.

    Article  CAS  PubMed  Google Scholar 

  • Heslop-Harrison JS, Brandes A, Taketa S, 1997. The chromosomal distribution of Ty1-copia group retrotransposable elements in higher plants and their implications for genome evolution. Genetica 100: 197–204.

    Article  CAS  PubMed  Google Scholar 

  • Jiang N, Bao Z, Zhang X, Eddy SR, Wessler SR, 2004. Pack-MULE transposable elements mediate gene evolution in plants. Nature 431: 569–573.

    Article  CAS  PubMed  Google Scholar 

  • Kalendar R, Tanskanen J, Chang W, Antonius K, Sela H, Peleg O, Schulman AH, 2008.Cassandra retrotransposons carry independently transcribed 5S RNA. Proc Natl Acad Sci USA 105: 5833–5838.

    Article  CAS  PubMed  Google Scholar 

  • Lee JK, Kwon SJ, Park KC, Kim NS, 2005.Isaac-CACTA transposons: new genetic markers in maize and sorghum. Genome 48: 455–460.

    Article  CAS  PubMed  Google Scholar 

  • Lewin B, 1997. Transposons. In: Genes VI. Oxford University Press, Inc., New York B. Lewin, ed. 563–595.

    Google Scholar 

  • Martienssen R, Moazed D, 2006. RNAi and heterochromatin assembly. CSHL Epigenetics text-book. D. Allis, T. Jenuwein, D. Reinberg, eds. Cold Spring Harbor Laboratory Press, NY, USA.

    Google Scholar 

  • Miura A, Yonebayashi S, Watanabe K, Toyama T, Shimada H, Kakutani T, 2001. Mobilization of transposons by a mutation abolishing full DNA methylation inArabidopsis. Nature 411: 212–214.

    Article  CAS  PubMed  Google Scholar 

  • Morgante M, Brunner S, Pea G, Fengler K, Zuccolo A, Rafalski A, 2005. Gene duplication and exon shuffling by helitron-like transposons generate intraspecies diversity in maize. Nat Genet 37: 997–1002.

    Article  CAS  PubMed  Google Scholar 

  • Murray M, Thompson WF, 1980. Rapid isolation of molecular Wright plant DNA. Nucleic Acids Research 8: 4321–4325.

    Article  CAS  PubMed  Google Scholar 

  • Nacken WKF, Piotrowiak R, Saedler H, Sommer H, 1991. The transposable elementTAM-1 ofAntirrhinum majus shows structural homology to the maize transposonEn/Spm and has no sequence specificity of insertion. Mol Gen Genet 228: 201–208.

    Article  CAS  PubMed  Google Scholar 

  • Nagaki K, Tsujimoto H, Saskuma T, 1999. A novel repetitive sequence, termedthe JNK repeat family, located on an extra heterochromatic region of chromosome 2R of Japanese rye. Chromosome Research 6: 95–101.

    Article  Google Scholar 

  • Ozeki Y, Davies E, Takeda J, 1997. Somatic variation during long term subculturing of plant cells caused by insertion of a transposable element in a pheny lalanine ammonia-lyase(PAL) gene. MolGen Genet 254: 407–416.

    CAS  Google Scholar 

  • Reddy P, Appels R, 1989. A second locus for the 5S multigene family inSecale cereale L. sequence divergence in two lineages of the family. Genome 32: 457–467.

    CAS  PubMed  Google Scholar 

  • Redi CA, Garagna S, Zacharias H, Zuccotti M, Capanna E, 2001. The other chromatin. Chromosoma 110: 136–147.

    Article  CAS  PubMed  Google Scholar 

  • Rogalska SM, 1978. Rozmieszczenie heterochromatyny w chromosomach kilku odmian diploidalnego żytaSecale cereale L. [Distribution of heterochromatin in chromosomes of several cultivars ryeSecale cereale L.]. Hodowla Roślin 5: 7–10 (in Polish).

    Google Scholar 

  • Rogalska SM, 1992. Charakterystyka molekularna i cytogenetyczna heterochromatyny w chromosomach żyta (Secale cereale L.). [Molecular characteristics and cytogenetic role of heterochromatin in chromosomes of rye (Secale cereale L.)]. Post Biol Kom 19: 107–116 (in Polish).

    CAS  Google Scholar 

  • Rogalska S, Apolinarska B, 1998. Mobility of C-band on chromosomes of ryeSecale vavilovii. Cytogenetics and Cell Genetics, Proceedings 13th International Chromosome Conference Ancona (Italy): 145.

  • Rogalska SM, Achrem M, Stróżycki P, 2001. The pScJNK1 repeated sequences identified on an extra heterochromatin bandon chromosome 2R ofSecale vavilovii Grossh. lines. Biological Bulletin 38: 15–19.

    CAS  Google Scholar 

  • Rogalska SM, Achrem M, Słomińska-Walkowiak R, Filip E, Skuza L, Pawłowska J, Apolinarska B, 2002. Polymorphism of heterochromatin bands on chromosomes of ryeSecale vavilovii Grossh. lines. Acta Biol Crac ser. Botanica 44: 111–117.

    Google Scholar 

  • Rogalska S, Achrem M, Kalinka A, 2007. Occurrence of JNK sequences in the species of the genusSecale. Vorträge für Pflanzenzüchtung 71: 181–188.

    Google Scholar 

  • Rogers SO, Bendich AJ, 1987. Ribosomal RNA genes in plants: variability in copy number and in the intergenic spacer. Plant Molecular Biology 9: 509–520.

    Article  CAS  Google Scholar 

  • Saunders VA, Houben A, 2001. The pericentromeric heterochromatin of the grassZingeria biebersteiniana (2n = 4) is composed of Zbcen1-type tandem repeats that are intermingled with accumulated dispersedly organized sequences. Genome 44: 955–961.

    Article  CAS  PubMed  Google Scholar 

  • Shang HY, Baum B, Wei YM, Zheng YL, 2007. The 5SrRNA gene diversity in the genusSecale and determination of its closest haplomes. Genet Res Crop Evol 54: 793–806.

    Article  CAS  Google Scholar 

  • Snowden KC, Napoli CA, 1998.PsI: a novel Spm-like transposable element fromPetunia hybrida. Plant J 14: 43–54.

    Article  CAS  PubMed  Google Scholar 

  • Strand M, Prolla TA, Liskay RM, Petes TD, 1993. Destabilization of tracts of simple repetitive DNA in yeast by mutations affecting DNA mismatch repair. Nature 365: 274–276.

    Article  CAS  PubMed  Google Scholar 

  • Tessadori F, Chupeau M-C, Chupeau Y, Knip M, Germann S, Driel R, et al. 2007. Large-scale dissociation and sequential reassembly of pericentric heterochromatin in dedifferentiatedArabidopsis cells. Journal of Cell Science 120: 1200–1208.

    Article  CAS  PubMed  Google Scholar 

  • Thompson J, Higgiin D, Gibson T, 1994. CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nuc Acids Res, 22: 4673–4680.

    Article  CAS  Google Scholar 

  • Turner BM, 2001. Chromatin and gene regulation: molecular mechanisms in epigenetics. Blackwell Science, Oxford.

    Book  Google Scholar 

  • Vershinin AV, Schwarzacher T, Heslop-Harrison JS, 1995. The large-scale genomic organization of repetitive DNA families at the telomeres of rye chromosomes. Plant Cell 7: 1823–1833.

    Article  CAS  PubMed  Google Scholar 

  • Wicker T, Gujot R, Yahiaoui N, Keller B, 2000 3. CACTA transposons in Triticeae: diverse family of high-copy repetitive elements. Plant Physiol 132: 52–63.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Achrem.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Achrem, M., Rogalska, S.M. & Kalinka, A. Possible ancient origin of heterochromatic JNK sequences in chromosomes 2R ofSecale vavilovii Grossh. J Appl Genet 51, 1–8 (2010). https://doi.org/10.1007/BF03195704

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03195704

Keywords

Navigation