Skip to main content
Log in

Mechanisms of physiological regulation of RNA synthesis in bacteria: new discoveries breaking old schemes

  • Review Article
  • Published:
Journal of Applied Genetics Aims and scope Submit manuscript

Abstract

Although in bacterial cells all genes are transcribed by RNA polymerase, there are 2 additional enzymes capable of catalyzing RNA synthesis: poly(A) polymerase I, which adds poly(A) residues to transcripts, and primase, which produces primers for DNA replication. Mechanisms of actions of these 3 RNA-synthesizing enzymes were investigated for many years, and schemes of their regulations have been proposed and generally accepted. Nevertheless, recent discoveries indicated that apart from well-understood mechanisms, there are additional regulatory processes, beyond the established schemes, which allow bacterial cells to respond to changing environmental and physiological conditions. These newly discovered mechanisms, which are discussed in this review, include: (i) specific regulation of gene expression by RNA polyadenylation, (ii) control of DNA replication by interactions of the starvation alarmones, guanosine pentaphosphate and guanosine tetraphosphate, (p)ppGpp, with DnaG primase, (iii) a role for the Dks A protein in ppGpp-mediated regulation of transcription, (iv) allosteric modulation of the RNA polymerase catalytic reaction by specific inhibitors of transcription, rifamycins, (v) stimulation of transcription initiation by proteins binding downstream of the promoter sequences, and (vi) promoter-dependent control of transcription antitermination efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altmann CR, Solow-Cordero DE, Chamberlin MJ, 1994. RNA cleavage and chain elongation byEscherichia coli DNA-dependent RNA polymerase in a binary enzyme. RNA complex. Proc Natl Acad Sci USA 91: 3784–3788.

    Article  CAS  PubMed  Google Scholar 

  • Artsimovitch I, Patlan V, Sekine S, Vassylyeva MN, Hosaka T, Ochi K, et al. 2004. Structural basis for transcription regulation by alarmone ppGpp. Cell 117: 299–310.

    Article  CAS  PubMed  Google Scholar 

  • Artsimovitch I, Vassylyeva MN, Svetlov D, Svetlov V, Perederina A, Igarashi N, et al. 2005. Allosteric modulation of the RNA polymerase catalytic reaction is an essential component of transcription control by rifamycins. Cell 122: 351–363.

    Article  CAS  PubMed  Google Scholar 

  • August JT, Ortiz PJ, Hurwitz J, 1962. Ribonucleic acid-dependent ribonucleotide incorporation. I. Purification and properties of the enzyme. J Biol Chem 237: 3786–3793.

    CAS  PubMed  Google Scholar 

  • Autret S, Levine A, Vannier F, Fujita Y, Seror SJ, 1999. The replication checkpoint control inBacillus subtilis: identification of a novel RTP-binding sequence essential for the replication fork arrest after induction of the stringent response. Mol Microbiol 31: 1665–1679.

    Article  CAS  PubMed  Google Scholar 

  • Avarbock D, Salem J, Li LS, Wang ZM, Rubin H, 1999. Cloning and characterization of a bifunctional RelA/SpoT homologue fromMycobacterium tuberculosis. Gene 233: 261–269.

    Article  CAS  PubMed  Google Scholar 

  • Barańska S, Gabig M, Węgrzyn A, Konopa G, Herman-Antosiewicz A, Hernandez P, et al. 2001. Regulation of the switch from early to late bacteriophage lambda DNA replication. Microbiology 147: 535–547.

    PubMed  Google Scholar 

  • Barker MM, Gaal T, Josaitis CA, Gourse RL 2001. Mechanism of regulation of transcription initiation by ppGpp. I. Effects of ppGpp on transcription initiation in vivo and in vitro. J Mol Biol 305: 673–688.

    Article  CAS  PubMed  Google Scholar 

  • Bernardo LM, Johansson LU, Solera D, Skarfstad E, Shingler V, 2006. The guanosine tetraphosphate (ppGpp) alarmone, DksA and promoter affinity for RNA polymerase in regulation of sigma-dependent transcription. Mol Microbiol 60: 749–764.

    Article  CAS  PubMed  Google Scholar 

  • Binns N, Masters M, 2002. Expression of theEscherichia coli pcnB gene is translationally limited using an inefficient start codon: a second chromosomal example of translation initiated at AUU. Mol Microbiol 44: 1287–1298.

    Article  CAS  PubMed  Google Scholar 

  • Blum E, Carpousis AJ, Higgins CF, 1999. Polyadenylation promotes degradation of 3’-structured RNA by theEscherichia coli mRNA degradosome in vitro. J Biol Chem 274: 4009–4016.

    Article  CAS  PubMed  Google Scholar 

  • Bonin I, Muhlberger R, Bourenkov GP, Huber R, Bacher A, Richter G, Wahl MC, 2004. Structural basis for the interaction ofEscherichia coli NusA with protein N of phage lambda. Proc Natl Acad Sci USA 101: 13762–13767.

    Article  CAS  PubMed  Google Scholar 

  • Borek E, Rockenbach J, Ryan A, 1956. Studies on a mutant ofEscherichia coli with unbalanced ribonucleic acid synthesis. J Bacteriol 71: 318–323.

    CAS  PubMed  Google Scholar 

  • Branny P, Pearson JP, Pesci EC, Kohler T, Iglewski BH, van Delden C, 2001. Inhibition of quorum sensing by aPseudomonas aeruginosa dksA homologue. J Bacteriol 183: 1531–1539.

    Article  CAS  PubMed  Google Scholar 

  • Browning DF, Busby SJ, 2004. The regulation of bacterial transcription initiation. Nat Rev Microbiol 2: 57–65.

    Article  CAS  PubMed  Google Scholar 

  • Burgess RR, Erickson B, Gentry D, Gribskov M, Hager D, Lesley S, et al. 1987. Bacterial RNA polymerase subunits and genes. In: Reznikoff WS, et al., eds. RNA polymerase and the regulation of transcription. New York: Elsevier Science Publications: 3–15.

    Google Scholar 

  • Campbell EA, Korzheva N, Mustaev A, Murakami K, Nair S, Goldfarb A, Darst SA, 2001. Structural mechanism for rifampicin inhibition of bacterial RNA polymerase. Cell 104: 901–912.

    Article  CAS  PubMed  Google Scholar 

  • Cao GJ, Sarkar N, 1992. Identification of the gene for anEscherichia coli poly(A) polymerase. Proc Natl Acad Sci USA 89: 10380–10384.

    Article  CAS  PubMed  Google Scholar 

  • Carmona M, Rodriguez MJ, Martinez-Costa O, de Lorenzo V, 2000. In vivo and in vitro effects of (p)ppGpp on the α54.promoter Pu of the TOL plasmid ofPseudomonas putida. J Bacteriol 182: 4711–4718.

    Article  CAS  PubMed  Google Scholar 

  • Cashel M, Gallant J, 1969. Two compounds implicated in the function of the RC gene ofEscherichia coli. Nature 221: 838–841.

    Article  CAS  PubMed  Google Scholar 

  • Cashel M, Gentry D, Hernandez VJ, Vinella D, 1996. The stringent response. In:Escherichia coli and Salmonella: cellular and molecular biology. Washington DC: American Society for Microbiology I: 1458–1496.

    Google Scholar 

  • Cellai S, Mangiarotti L, Vannini N, Naryshkin N, Kortkhonjia E, Ebright RH, Rivetti C, 2007. Upstream promoter sequences and alphaCTD mediate stable DNA wrapping within the RNA polymerase-promoter open complex. EMBO Rep 8: 271–278.

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty A, Nagaraja V, 2006. Dual role for transactivator protein C in activation of mom promoter of bacteriophage Mu. J Biol Chem 281: 8511–8517.

    Article  CAS  PubMed  Google Scholar 

  • Chatterji D, Fujita N, Ishihama A, 1998. The mediator for stringent control, ppGpp, binds to the beta-subunit ofEscherichia coli RNA polymerase. Genes Cells 3: 279–287.

    Article  CAS  PubMed  Google Scholar 

  • Chiaramello AE, Zyskind JW, 1990. Coupling of DNA replication to growth rate inEscherichia coli: a possible role for guanosine tetraphosphate. J Bacteriol. 172: 2013–2019.

    CAS  PubMed  Google Scholar 

  • Conant CR, van Gilst MR, Weitzel SE, Rees WA, von Hippel PH, 2005. A quantitative description of the binding states and in vitro function of antitermination protein N of bacteriophage lambda. J Mol Biol 348: 1039–1057.

    Article  CAS  PubMed  Google Scholar 

  • Condon C, Squires C, Squires CL, 1995. Control of rRNA transcription inEscherichia coli. Microbiol Rev 59: 623–645.

    CAS  PubMed  Google Scholar 

  • Farewell A, Kvint K, Nystrom T, 1998. Negative regulation by RpoS: a case of sigma factor competition. Mol Microbiol 29: 1039–1052.

    Article  CAS  PubMed  Google Scholar 

  • Feng Y, Cohen SN, 2000. Unpaired terminalnucleotides and 5’ monophosphorylation govern 3’ polyadenylation byEscherichia coli poly(A) polymerase I. Proc. Natl. Acad Sci USA 97: 6415–6420.

    Article  CAS  PubMed  Google Scholar 

  • Fiil N, Friesen JD, 1968. Isolation of “relaxed” mutants ofEscherichia coli. J Bacteriol 95: 729–731.

    CAS  PubMed  Google Scholar 

  • Friedman DI, Court DL, 1995. Transcription antitermination: the lambda paradigm updated. Mol Microbiol 18: 191–200.

    Article  CAS  PubMed  Google Scholar 

  • Gentry DR, Cashel M, 1995. Mutational analysis of theEscherichia coli spoT gene identifies distinct but overlapping regions involved in ppGpp synthesis and degradation. Mol Microbiol 19: 1373–1384.

    Article  Google Scholar 

  • Glinkowska M, Majka J, Messer W, Węgrzyn G, 2003. The mechanism of regulation of bacteriophage lambda pR promoter activity byEscherichia coli DnaA protein. J Biol Chem 278: 22250–22256.

    Article  CAS  PubMed  Google Scholar 

  • Gourse RL, Ross W, Rutherford ST, 2006. General pathway for turning on promoters transcribed by RNA polymerases containing alternative sigma factors. J Bacteriol 188: 4589–4591.

    Article  CAS  PubMed  Google Scholar 

  • Gusarov I, Nudler E, 2001. Control of intrinsic transcription termination by N and NusA: the basic mechanisms. Cell 107: 437–449.

    Article  CAS  PubMed  Google Scholar 

  • Guzman EC, Carrillo FJ, Jimenez-Sanchez A, 1988. Differential inhibition of the initiation of DNA replication in stringent and relaxed strains ofEscherichia coli. Genet Res 51: 173–177.

    Article  CAS  PubMed  Google Scholar 

  • Heinemeyer EA, Richter D, 1977. In vitro degradation of guanosine tetraphosphate (ppGpp) by an enzyme associated with the ribosomal fraction fromEscherichia coli. FEBS Lett. 84: 357–361.

    Article  CAS  PubMed  Google Scholar 

  • Herman A, Węgrzyn G, 1995. EffectofincreasedppGpp concentration on DNA replication of different replicons inEscherichia coli. J Basic Microbiol. 35: 33–39.

    Article  CAS  PubMed  Google Scholar 

  • Hernandez VJ, Bremer H, 1991.Escherichia coli ppGpp synthetase II activity requires spoT. J Biol Chem 266: 5991–5999.

    CAS  PubMed  Google Scholar 

  • Jasiecki J, Węgrzyn G, 2003. Growth-rate dependent RNA polyadenylation inEscherichia coli. EMBO Rep 4: 172–177.

    Article  CAS  PubMed  Google Scholar 

  • Jasiecki J, Węgrzyn G, 2005. Localization ofEscherichia coli poly(A) polymerase I in cellular membrane. Biochem Biophys Res Commun 329: 598–602.

    Article  CAS  PubMed  Google Scholar 

  • Jasiecki J, Węgrzyn G, 2006a. Transcription start sites in the promoter region of theEscherichia coli pcnB (plasmid copy number) gene coding for poly(A) polymerase I. Plasmid 55: 169–172.

    Article  CAS  PubMed  Google Scholar 

  • Jasiecki J, Węgrzyn G, 2006b. Phosphorylation ofEscherichia coli poly(A) polymerase I and effects of this modification on the enzyme activity. FEMS Microbiology Letters 261: 118–122.

    Article  CAS  PubMed  Google Scholar 

  • Jin DJ, Gross CA, 1988. Mapping and sequencing of mutations in theEscherichia coli rpoB gene that lead to rifampicin resistance. J Mol Biol 202: 45–58.

    Article  CAS  PubMed  Google Scholar 

  • Jishage M, Kvint K, Shingler V, Nyström T, 2002. Regulation of ó-factor competition by the alarmone ppGpp. Genes Dev 16: 1260–1270.

    Article  CAS  PubMed  Google Scholar 

  • Joanny G, Derout JL, Brechemier-Baey D, Labas V, Vinh J, Regnier P, Hajnsdorf E, 2007. Polyadenylation of a functional mRNA controls gene expression inEscherichia coli. Nucleic Acids Res. DOI: 10.1093/nar/gkm120.

  • Johnson NP, Baase WA, vonHippel PH, 2005. Low energy CD of RNA hairpin unveils a loop conformation required for lambda N antitermination activity. J Biol Chem 280: 32177–32183.

    Article  CAS  PubMed  Google Scholar 

  • Jores L, Wagner R, 2003. Essential steps in the ppGpp-dependent regulation of bacterial ribosomal RNA promoters can be explained by substrate competition. J Biol Chem 278: 16834–16843.

    Article  PubMed  CAS  Google Scholar 

  • Kajitani M, Ishihama A, 1994. Promoter selectivity ofEscherichia coli RNA polymerase. Differential stringent control of the multiple promoters from ribosomal RNA and protein operons. J Biol Chem. 259: 1951–1957.

    Google Scholar 

  • Kang PJ, Craig EA, 1990. Identification and characterization of a newEscherichia coli gene that is a dosage-dependent suppressor of a dnaK deletion mutation. J Bacteriol 172: 2055–2064.

    CAS  PubMed  Google Scholar 

  • Kapanidis AN, Margeat E, Ho SO, Kortkhonjia E, Weiss S, Ebright RH, 2006. Initial transcription by RNA polymerase proceeds through a DNA-scrunching mechanism. Science 314: 1144–1147.

    Article  PubMed  CAS  Google Scholar 

  • Konopa G, Szalewska-Pałasz A, Schmidt A, Śrutkowska S, Messer W, Węgrzyn G, 1999. The presence of two DnaA-binding sequences is required for an efficient interaction of theEscherichia coli DnaA protein with each particular weak DnaA box region. FEMS Microbiol Lett 174: 25–31.

    Article  CAS  PubMed  Google Scholar 

  • Kornberg A, Baker J, 1992. DNA replication, 2nd ed. New York: W.H. Freeman & Co.

    Google Scholar 

  • Kvint K, Hosbond C, Farewell A, Nybroe O, Nystrom T, 2000a. Emergency derepression: stringency allows RNA polymerase to override negative control by an active repressor. Mol Microbiol 35: 435–443.

    Article  CAS  PubMed  Google Scholar 

  • Kvint K, Farewell A, Nystrom T, 2000b. RpoS-dependent promoters require guanosine tetraphosphate for induction even in the presence of high level of óS. J Biol Chem 275: 14795–14798.

    Article  CAS  PubMed  Google Scholar 

  • Laurie AD, Bernardo LM, Sze CC, Skarfstad E, Szalewska-Pałasz A, Nystrom T, Shingler V, 2003. The role of the alarmone (p)ppGpp in sigma N competition for core RNA polymerase. J Biol Chem 278: 1494–503.

    Article  CAS  PubMed  Google Scholar 

  • Levine A, Vannier F, Dehbi M, Henckes G, Seror SJ, 1991. The stringent response blocks DNA replication outside the ori region inBacillus subtilis and at the origin inEscherichia coli. J Mol Biol. 219: 605–613.

    Article  CAS  PubMed  Google Scholar 

  • Levine A, Autret S, Seror SJ, 1995. A checkpoint involving RTP, the replication terminator protein, arrests replication downstream of the origin during the Stringent Response inBacillus subtilis. Mol Microbiol 15: 287–295.

    Article  CAS  PubMed  Google Scholar 

  • Lobner-Olesen A, Marinus MG, Hansen FG, 2003. Role of SeqA and Dam inEscherichia coli gene expression: a global/microarray analysis. Proc Natl Acad Sci USA 100: 4672–4677.

    Article  CAS  PubMed  Google Scholar 

  • Łyzen R, Węgrzyn G, Węgrzyn A, Szalewska-Pałasz A, 2006. Stimulation of the lambda pR promoter byEscherichia coli SeqA protein requires downstream GATC sequences and involves late stages of transcription initiation. Microbiology 152: 2985–2992.

    Article  PubMed  Google Scholar 

  • Magnusson LU, Farewell A, Nystrom T, 2005. ppGpp: a global regulator inEscherichia coli. Trends Microbiol 13: 236–242.

    Article  CAS  PubMed  Google Scholar 

  • McClure WR, Cech CL, 1978. On the mechanism of rifampicin inhibition of RNA synthesis. J Biol Chem 253: 8949–8956.

    CAS  PubMed  Google Scholar 

  • Mechold U, Cashel M, Steiner K, Gentry D, Malke H, 1996. Functional analysis of a relA/spoT gene homolog fromStreptococcus equisimilis. J Bacteriol 178: 1401–1411.

    CAS  PubMed  Google Scholar 

  • Messer W, Weigel C, 1997. DnaA initiator — also a transcription factor. Mol Microbiol 24: 1–6.

    Article  CAS  PubMed  Google Scholar 

  • Messer W, Weigel C, 2003. DnaAasatranscriptionregulator. Methods Enzymol. 370: 338–349.

    Article  CAS  PubMed  Google Scholar 

  • Mittenhuber G, 2001. Comparative genomics and evolution of genes encoding bacterial (p)ppGpp synthetases/hydrolases (the Rel, RelA and SpoT proteins). J Mol Microbiol Biotechnol 3: 585–600.

    CAS  PubMed  Google Scholar 

  • Mohanty BK, Kushner SR, 1999. Residual polyadenylation in poly(A) polymerase I (pcnB) mutants ofEscherichia coli does not result from the activity encoded by the f310.gene. Mol Microbiol 34: 1094–1108.

    Article  CAS  PubMed  Google Scholar 

  • Mohanty BK, Kushner SR, 2006. The majority ofEscherichia coli mRNAs undergo post-transcriptional modification in exponentially growing cells. Nucleic Acids Res 34: 5695–5704.

    Article  CAS  PubMed  Google Scholar 

  • Munson GP, Scott JR, 2000. Rns, a virulence regulator within the AraC family, requires binding sites upstream and downstream of its own promoter to function as an activator. Mol Microbiol 36: 1391–1402.

    Article  CAS  PubMed  Google Scholar 

  • Munson GP, Holcomb LG, Scott JR, 2001. Novel group of virulence activators within the AraC family that are not restricted to upstream binding sites. Infect Immun 69: 186–193.

    Article  CAS  PubMed  Google Scholar 

  • Murray KD, Bremer H, 1996. Control of spoT-dependent ppGpp synthetic and degradation inEscherichia coli. J Mol Biol 259: 41–57.

    Article  CAS  PubMed  Google Scholar 

  • Narajczyk M, Barańska S, Węgrzyn A, Węgrzyn G, 2007a. Switch from theta to sigma replication of bacteriophage lambda DNA: factors involved in the process and a model for its regulation. Mol Genet Genomics DOI: 10.1007/s00438-007-0228-y.

  • Narajczyk M, Barańska S, Szambowska A, Glinkowska M, Węgrzyn A, Węgrzyn G, 2007b. Modulationoflambda plasmid and phage DNA replication byEscherichia coli SeqA protein. Microbiology 153: 1653–1663.

    Article  CAS  PubMed  Google Scholar 

  • Newell KV, Thomas DP, Brekasis D, Paget MS, 2006. The RNA polymerase-binding protein RbpA confers basal levels of rifampicin resistance onStreptomyces coelicolor. Mol Microbiol 60: 687–696.

    Article  CAS  PubMed  Google Scholar 

  • Nudler E, Gottesman ME, 2002. Transcription termination and anti-termination inE. coli. Genes Cells 7: 755–768.

    Article  CAS  PubMed  Google Scholar 

  • Nystrom T, 1994. The glucose-starvation stimulon ofEscherichia coli: induced and repressed synthesis of enzymes of central metabolic pathways and role of acetyl phosphate in gene expression and starvation survival. Mol Microbiol 12: 833–843.

    Article  CAS  PubMed  Google Scholar 

  • O’Hara EB, Chekanova JA, Ingle CA, Kushner ZR, Peters E, Kushner SR, 1995. Polyadenylylation helps regulate mRNA decay inEscherichia coli. Proc Natl Acad Sci USA, 92: 1807–1811.

    Article  PubMed  Google Scholar 

  • Paul BJ, Barker MM, Ross W, Schneider DA, Webb C, Foster JW, Gourse RL, 2004. DksA: a critical component of the transcription initiation machinery that potentiates the regulation of rRNA promoters by ppGpp and the initiating NTP. Cell 118: 311–322.

    Article  CAS  PubMed  Google Scholar 

  • Paul BJ, Berkmen MB, Gourse RL, 2005. DksA potentiates direct activation of amino acid promoters by ppGpp. Proc Natl Acad Sci USA 102: 7823–7828.

    Article  CAS  PubMed  Google Scholar 

  • Perederina A, Svetlov V, Vassylyeva MN, Tahirov TH, Yokoyama S, Artsimovitch I, Vassylyev DG, 2004. Regulation through the secondary channel — structural framework for ppGpp-DksA synergism during transcription. Cell 118: 297–309.

    Article  CAS  PubMed  Google Scholar 

  • Perron K, Comte R, van Delden C, 2005. DksA represses ribosomal gene transcription inPseudomonas aeruginosa by interacting with RNA polymerase on ribosomal promoters. Mol Microbiol 56: 1087–1102.

    Article  CAS  PubMed  Google Scholar 

  • Potrykus K, Węgrzyn G, Hernandez VJ, 2002. Multiple mechanisms of transcription inhibition by ppGpp at the lambda pR promoter. J Biol Chem 277: 43785–43791.

    Article  CAS  PubMed  Google Scholar 

  • Potrykus K, Vinella D, Murphy H, Szalewska-Pałasz A, D’Ari R, Cashel M, 2006. Antagonistic regulation ofEscherichia coli ribosomal RNA rrnB P1promoter activity byGreA and DksA. J Biol Chem 281: 15238–15248.

    Article  CAS  PubMed  Google Scholar 

  • Prasch S, Schwarz S, Eisenmann A, Wohrl BM, Schweimer K, Rosch P, 2006. Interaction of the intrinsically unstructured phage lambda N Protein withEscherichia coli NusA. Biochemistry 45: 4542–4549.

    Article  CAS  PubMed  Google Scholar 

  • Regnier P, Arraiano CM, 2000. Degradation of mRNA in bacteria: emergence of ubiquitous features. BioEssays 22: 235–244.

    Article  CAS  PubMed  Google Scholar 

  • Revyakin A, Liu C, Ebright RH, Strick TR, 2006. Abortive initiation and productive initiation by RNA polymerase involve DNA scrunching. Science 314: 1139–1143;

    Article  CAS  PubMed  Google Scholar 

  • Rivetti C, Guthold M, Bustamante C, 1999. Wrapping of DNA around theE. coli RNA polymerase open promoter complex. EMBO J 18: 4464–4475.

    Article  CAS  PubMed  Google Scholar 

  • Rutherford ST, Lemke JJ, Vrentas CE, Gaal T, Ross W, Gourse RL, 2007. EffectsofDksA, GreA, and GreB on transcription initiation: insights into the mechanisms of factors that bind in the secondary channel of RNA polymerase. J Mol Biol 366: 1243–1257.

    Article  CAS  PubMed  Google Scholar 

  • Sarkar N, 1996. Polyadenylation of mRNA in bacteria. Microbiology 142: 3125–3133

    Article  CAS  PubMed  Google Scholar 

  • Sarkar N, 1997. Polyadenylation of mRNA in prokaryotes. Annu Rev Biochem 66: 173–197.

    Article  CAS  PubMed  Google Scholar 

  • Schreiber G, Ron EZ, Glaser G, 1995. ppGpp-mediated regulation of DNA replication and cell division inEscherichia coli. Curr Microbiol. 30: 27–32.

    Article  CAS  PubMed  Google Scholar 

  • Sharma AK, Payne SM, 2006. Induction of expression of hfq by DksA is essential forShigella flexneri virulence. Mol Microbiol 62: 469–479.

    Article  CAS  PubMed  Google Scholar 

  • Shingler V, 2003. Integrated regulation in response to aromatic compounds: from signal sensing to attractive behaviour. Environ Microbiol 5: 1226–1241.

    Article  CAS  PubMed  Google Scholar 

  • Słomińska M, Węgrzyn A, Konopa G, Skarstad K, Węgrzyn G, 2001. SeqA, theEscherichia coli origin sequestration protein, is also a specific transcription factor. Mol Microbiol 40: 1371–1380.

    Article  PubMed  Google Scholar 

  • Słomińska M, Konopa G, Barańska S, Węgrzyn G, Węgrzyn A, 2003a. Interplay between DnaA and SeqA proteins during regulation of bacteriophage lambda pR promoter activity. J Mol Biol 329: 59–68.

    Article  PubMed  CAS  Google Scholar 

  • Słomińska M, Konopa G, Ostrowska J, Kędzierska B, Węgrzyn G, Węgrzyn A, 2003b. SeqA-mediated stimulation of a promoter activity by facilitating functions of a transcription activator. Mol Microbiol 47: 1669–1679.

    Article  PubMed  Google Scholar 

  • Sperandio V, Mellies JL, Delahay RM, Frankel G, Crawford JA, Nguyen W, Kaper JB, 2000. Activation of enteropathogenicEscherichia coli (EPEC) LEE2 and LEE3 operons by Ler. Mol Microbiol 38: 781–793.

    Article  CAS  PubMed  Google Scholar 

  • Steege DA, 2000. Emerging features of mRNA decay in bacteria. RNA 6: 1079–1090.

    Article  CAS  PubMed  Google Scholar 

  • Strzelczyk B, Słomińska-Wojewódzka M, Węgrzyn G, Węgrzyn A, 2003. Non-random distribution of GATC sequences in regions of promoters stimulated by the SeqA protein ofEscherichia coli. Acta Biochim Pol 50: 941–945.

    CAS  PubMed  Google Scholar 

  • Sy J, 1977. In vitro degradation of guanosine 5’-diphosphate, 3’-diphosphate. Proc Natl Acad Sci USA. 74: 5529–5533.

    Article  CAS  PubMed  Google Scholar 

  • Szalewska-Pałasz A, Węgrzyn A, Herman A, Węgrzyn G, 1994. The mechanism of the stringent control of lambda plasmid replication. EMBO J 13: 5779–5785.

    PubMed  Google Scholar 

  • Szalewska-Pałasz A, Wróbel B, Węgrzyn G, 1998a. Rapid degradation of polyadenylated oop RNA FEBS Lett 432: 70–72.

    Article  PubMed  Google Scholar 

  • Szalewska-Pałasz A, Węgrzyn A, Błaszczak A, Taylor K, Węgrzyn G, 1998b. DnaA stimulated transcriptional activation of oriX:Escherichia coli RNA polymeraseβ subunit as a transcriptional activator contact site. Proc Natl Acad Sci USA 95: 4241–4246.

    Article  PubMed  Google Scholar 

  • Szalewska-Pałasz A, Lemieszek E, Pankiewicz A, Węgrzyn A, Helinski DR, Węgrzyn G, 1998c.Escherichia coli dnaA gene function and bacteriophage lambda replication. FEMS Microbiol Lett 167: 27–32.

    Article  PubMed  Google Scholar 

  • Szalewska-Pałasz A, Strzelczyk B, Herman-Antosiewicz A, Węgrzyn G, Thomas MS, 2003. Genetic analysis of bacteriophage lambda N-dependent antitermination suggests a possible role for the RNA polymerase alpha subunit in facilitating specific functions of NusA and NusE. Arch Microbiol 180: 161–168.

    Article  PubMed  CAS  Google Scholar 

  • Szalewska-Pałasz A, Johansson LU, Bernardo LMD, Skarfstad E, Stec E, Brannstrom K, Shingler V, 2007. Properties of RNA polymerase bypass mutants: implications for ppGpp- and DksA-mediated control of sigma54-dependent transcription. J Biol Chem 282: 18046–18056.

    Article  PubMed  Google Scholar 

  • Sze CC, Shingler V, 1999. The alarmone (p)ppGpp mediates physiological-responsive control at the ó54-dependent pO promoter. Mol Microbiol 31: 1217–1228.

    Article  CAS  PubMed  Google Scholar 

  • Taylor K, Węgrzyn G, 1995. Replication of coliphage lambda DNA. FEMS Microbiol Rev 17: 109–119.

    Article  CAS  PubMed  Google Scholar 

  • Toulokhonov II, Shulgina I, Hernandez VJ, 2001. Binding of the transcription effector ppGpp toEscherichia coli RNA polymerase is allosteric, modular, and occurs near the N terminus of the β’-subunit. J Biol Chem 276: 1220–1225.

    Article  CAS  PubMed  Google Scholar 

  • Travers A, Muskhelishvili G, 2007. A common topology for bacterial and eukaryotic transcription initiation? EMBO Rep 8: 147–151.

    Article  CAS  PubMed  Google Scholar 

  • Viducic D, Ono T, Murakami K, Susilowati H, Kayama S, Hirota K, Miyake Y, 2006. Functional analysis of spo T, relA and dksA genes on quinolone tolerance inPseudomonas aeruginosa under nongrowing condition. Microbiol Immunol 50: 349–357.

    CAS  PubMed  Google Scholar 

  • Vieu E, Rahmouni AR, 2004. Dual role of boxB RNA motif in the mechanisms of termination/ antitermination at the lambda tR1 terminator revealed in vivo. J Mol Biol 339: 1077–1087.

    Article  CAS  PubMed  Google Scholar 

  • Wagner R, 2002. Regulation of ribosomal RNA synthesis inE. coli: effects of the global regulator guanosine tetraphosphate (ppGpp). J Mol Microbiol Biotechnol 4: 331–340.

    CAS  PubMed  Google Scholar 

  • Wang JD, Sanders GM, Grossman AD, 2007. Nutritional control of elongation of DNA replication by (p)ppGpp. Cell 128: 865–875.

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Yuan Z, Xiang L, Shao J, Węgrzyn G, 2006. tRNA-dependent cleavage of the ColE1 plasmidencoded RNA I. Microbiology 152: 3467–3476.

    Article  CAS  PubMed  Google Scholar 

  • Webb C, Moreno M, Wilmes-Riesenberg M, Curtiss R 3 rd, Foster JW, 1999. Effects of DksA and ClpP protease on sigma S production and virulence inSalmonella typhimurium. Mol Microbiol 34: 112–123.

    Article  CAS  PubMed  Google Scholar 

  • Węgrzyn G, Szalewska-Pałasz A, Węgrzyn A, Obuchowski M, Taylor K, 1995. Transcriptional activation of the origin of coliphage lambda DNA replication is regulated by the host DnaA initiator function. Gene 154: 47–50.

    Article  PubMed  Google Scholar 

  • Węgrzyn A, Szalewska-Pałasz A, Błaszczak A, Liberek K, Węgrzyn G, 1998. Differential inhibition of transcription from sigma70- and sigma 32-dependent promoters by rifampicin. FEBS Lett 440: 172–174.

    Article  PubMed  Google Scholar 

  • Węgrzyn G, 1999. Replication of plasmids during bacterial response to amino acid starvation. Plasmid 41: 1–16.

    Article  PubMed  Google Scholar 

  • Węgrzyn G, Węgrzyn A, 2005. Genetic switches during bacteriophage lambda development. Prog Nucleic Acid Res Mol Biol 79: 1–48.

    Article  PubMed  CAS  Google Scholar 

  • Weisberg RA, Gottesman ME, 1999. Processive antitermination. J Bacteriol 181: 359–367.

    CAS  PubMed  Google Scholar 

  • Wendrich TM, Marahiel MA, 1997. Cloning and characterization of a relA/spoT homologue fromBacillus subtilis. Mol Microbiol. 26: 65–79.

    Article  CAS  PubMed  Google Scholar 

  • Wichelhaus T, Schafer V, Brade V, Boddinghaus B, 2001. Differential effect of rpo B mutations on antibacterial activities of rifampicin and KRM-1648 againstStaphylococcus aureus. J Antimicrob Chemother 47: 153–156.

    Article  CAS  PubMed  Google Scholar 

  • Williams DL, Spring L, Collins L, Miller LP, Heifets LB, Gangadharam PR, Gillis TP, 1998. Contribution of rpoB mutations to development of rifamycin cross-resistance inMycobacterium tuberculosis. Antimicrob Agents Chemother 42: 1853–1857.

    CAS  PubMed  Google Scholar 

  • Wróbel B, Węgrzyn G, 1998. Replication regulation of ColE1-like plasmids in amino acid-starvedEscherichia coli. Plasmid 39: 48–62.

    Article  PubMed  Google Scholar 

  • Wróbel B, Herman-Antosiewicz A, Szalewska-Pałasz A, Węgrzyn G, 1998. Polyadenylation of oop RNA in the regulation of bacteriophage lambda development. Gene 212: 57–65

    Article  PubMed  Google Scholar 

  • Xia T, Wan C, Roberts RW, Zewail AH, 2005. RNA-protein recognition: single-residue ultrafast dynamical control of structural specificity and function. Proc Natl Acad Sci USA 102: 13013–13018.

    Article  CAS  PubMed  Google Scholar 

  • Xiao H, Kalman M, Ikehara K, Zemel S, Glaser G, Cashel M, 1991. Residual guanosine 3’,5’-bispyrophosphate synthetic activity of relA null mutant can be eliminated by spoT null mutations. J Biol Chem 266: 5980–5990.

    CAS  PubMed  Google Scholar 

  • Xu F, Cohen SN, 1995. RNA degradation inEscherichia coli regulated by 3’ adenylation and 5’ phosphorylation. Nature 374: 180–183.

    Article  CAS  PubMed  Google Scholar 

  • Yehudai-Resheff S, Schuster G, 2000. Characterization of theE. coli poly(A) polymerase: nucleotide specificity, RNA-binding affinities and RNA structure dependence Nucleic Acids Res 28: 1139–1144.

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Shi T, Mozola MA, Olson ER, Henthorn K, Brown S, Gussin GN, Friedman DI, 2006. Evidence that the promoter can influence assembly of antitermination complexes at downstream RNA sites. J Bacteriol 188: 2222–2232.

    Article  CAS  PubMed  Google Scholar 

  • Zyskind JW, Smith DW, 1992. DNA replication, the bacterial cell cycle, and cell growth. Cell 69: 5–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnieszka Szalewska-Pałasz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szalewska-Pałasz, A., Węgrzyn, G. & Węgrzyn, A. Mechanisms of physiological regulation of RNA synthesis in bacteria: new discoveries breaking old schemes. J Appl Genet 48, 281–294 (2007). https://doi.org/10.1007/BF03195225

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03195225

Keywords

Navigation