Skip to main content
Log in

Effects of latitude and allopatry on body size variation in European water shrews

  • Published:
Acta Theriologica Aims and scope Submit manuscript

Abstract

We studied the intra- and interspecific size variability of 271 water shrewsNeomys fodiens (Pennant, 1771) andN. anomalus Cabrera, 1907 from seven sample sites along a latitudinal transect from Bosnia and Herzegovina to Poland.Neomys anomalus was the only water shrew in three Dinaride karst fields, while it was sympatric with N.fodiens in remaining sites. The first principal component scores (PC1; 72.2% of variance explained), derived from principal components analysis of 13 cranial, mandibular and dental measurements, were used as the size factor. One-way ANOVA detected significant interpopulation variation in both species; intraspecific variation, however, was much more pronounced inN. anomalus. No latitudinal size pattern was found in N. fodiens (r = −0.42, p = 0.58), while mean PC1 scores correlated significantly and negatively with latitude inN. anomalus (r = −0.92, p = 0.004). Therefore, along a north to south transect,N. anomalus converged in size towards N. fodiens, which suggests that the former species occupies increasingly more aquatic habitats in the same direction. Individuals from allopatric populations ofN. anomalus from Slovenia and Bosnia and Herzegovina were, on average, larger than sympatric conspecific populations from the same latitudinal zone, which is consistent with the hypothesis of character displacement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams D. C. and Rohlf F. J. 2000. Ecological character displacement inPlethodon: biomechanical differences found from a geometric morphometric study. Proceedings of the National Academy of Science 97: 4106–4111.

    Article  CAS  Google Scholar 

  • Aitchison C. W. 1987. Review of winter trophic relations of soricine shrews. Mammal Review 17: 1–24.

    Article  Google Scholar 

  • Ashton K. G. 2002. Patterns of within-species body size variation of birds: strong evidence for Bergmann’s rule. Global Ecology and Biogeography 11: 505–523.

    Article  Google Scholar 

  • Bergmann C. 1847. Ueber die Verhältnisse der Wärmekönomie der Thiere zu ihrer Grösse. Gottinger Studien 3: 595–708.

    Google Scholar 

  • Bonacci O. 2004. Poljes. [In: Encyclopedia of caves and karst science. J. Gunn, ed]. Fitzroy Dearborn, New York: 599–600.

    Google Scholar 

  • Boyce M. S. 1978. Climatic variability and body size variation in the muskrats (Ondatra zibethicus) of North America. Oecologia 36: 1–19.

    Article  Google Scholar 

  • Brown W. L. and Wilson E. O. 1956. Character displacement. Systematic Zoology 5: 49–64.

    Article  Google Scholar 

  • Calder W. A. 1984. Size, function, and life history. Harvard University Press, Cambridge: 1–431.

    Google Scholar 

  • Carraway L. N. and Verts B. J. 2005. Assessment of variation in cranial and mandibular dimensions in geographical races ofSorex towbridgii. [In: Advances in the biology of shrews II. J. F. Merritt, S. Churchfield, R. Hutterrer and B. I. Sheftel, eds]. International Society of Shrew Biologists, New York: 139–153.

    Google Scholar 

  • Churchfield S. 1990. The natural history of shrews. Christopher Helm, London: 1–178.

    Google Scholar 

  • Churchfield S. and Rychlik L. 2006. Diets and coexistence inNeomys andSorex shrews in Białowieża forest, eastern Poland. Journal of Zoology, London 269: 381–390.

    Article  Google Scholar 

  • Churchfield S., Rychlik L., Yavrouyan E. and Turlejski K. 2006. First results on the feeding ecology of the Transcaucasian water shrewNeomys teres (Soricomorpha: Soricidae) from Armenia. Canadian Journal of Zoology 84: 1853–1858.

    Article  Google Scholar 

  • Dickman C. R. 1988. Body size, prey size, and community structure in insectivorous mammals. Ecology 69: 569–580.

    Article  Google Scholar 

  • Dickman C. R. 1991. Mechanisms of competition among insectivorous mammals. Oecologia 85: 464–471.

    Article  Google Scholar 

  • Doebeli M. 1996. An explicit genetic model for ecological character displacement. Ecology 77: 510–520.

    Article  Google Scholar 

  • Findley J. S. 1989. Morphological patterns in rodent communities of soutwestern North America. [In: Patterns in the structure of mammalian communities. D. W. Morris, Z. Abramsky, B. J. Fox and M. R. Willig, eds]. Texas Tech University Press, Lubbock: 253–263.

    Google Scholar 

  • Fordyce J. A. 2006. The evolutionary consequences of ecological interactions mediated through phenotypic plasticity. The Journal of Experimental Biology 209: 2377–2383.

    Article  PubMed  Google Scholar 

  • Geist V. 1987. Bergmann’s rule is invalid. Canadian Journal of Zoology 65: 1935–1038.

    Article  Google Scholar 

  • Grant P. R. and Grant B. R. 2006. Evolution of character displacement in Darwin’s finches. Science 313: 224–226.

    Article  CAS  PubMed  Google Scholar 

  • Hanski I. and Kaikusalo A. 1989. Distribution and habitat selection of shrews in Finland. Annales Zoologici Fennici 26: 339–348.

    Google Scholar 

  • Hutterer R. 1985. Anatomical adaptations of shrews. Mammal Review 15: 43–55.

    Article  Google Scholar 

  • Kendeight S. C. 1969. Tolerance of cold and Bergmann’s rule. Auk 86: 13–25.

    Google Scholar 

  • Krushinska N. L. and Pucek Z. 1989. Ethological study of sympatric species of European water shrews. Acta Theriologica 34: 269–285.

    Google Scholar 

  • Krushinska N. L. and Rychlik L. 1993. Intra- and interspecific antagonistic behavious in two sympatric species of water shrews:Neomys fodiens andN. anomalus. Journal of Ethology 11: 11–21.

    Article  Google Scholar 

  • Kryštufek B., Davison A. and Griffiths H. I. 2000. Evolutionary beiogeography of water shrews (Neomys spp.) in the western Palaearctic region. Canadian Journal of Zoology 78: 1616–1625.

    Article  Google Scholar 

  • Lemen C. A. 1983. The effectiveness of methods of shape analysis. Fieldiana Zoology N.S. 15: 1–17.

    Google Scholar 

  • Lindstedt S. L. and Boyce M. S. 1985. Seasonality, fasting endurance, and body size in mammals. The American Naturalist 125: 873–878.

    Article  Google Scholar 

  • Mayr E. 1963. Animal species and evolution. Harvard University Press, Cambridge, MA: 1–797.

    Google Scholar 

  • McNab B. K. 1971. On the ecological significance of Bergmann’s rule. Ecology 52: 845–854.

    Article  Google Scholar 

  • McNab B. K. 2006. The evolution of energetics in eutherian “insectivorans”: an alternate approach. Acta Theriologica 51: 113–128.

    Article  Google Scholar 

  • Meiri S. and Dayan T. 2003. On the validity of Bergmann’s rule. Journal of Biogeography 30: 331–351.

    Article  Google Scholar 

  • Mitchell-Jones A., Amori G., Bogdanowicz W., Kryštufek B., Reijnders P. J. H., Spitzenberger F., Stubbe M., Thissen J. B. M., Vohralik V. and Zima J. 1999. The atlas of European mammals. Poyser Natural History, London: 1–484.

    Google Scholar 

  • Niethammer J. and Krapp F. 1990. Handbuch der Säugetiere Europas. Band 3/I: Insektenfresser, Herrentiere. Aula-Verlag, Wiesbaden: 1–523.

    Google Scholar 

  • Ochocińska D. and Taylor J. R. E. 2003. Bergmann’s rule in shrews: geographical variation of body size in Palearctic Sorex species. Biological Journal of the Linnean Society 78: 365–381.

    Article  Google Scholar 

  • Pfenning D. W., Rice A. M. and Martin R. A. 2006. Ecological opportunity and phenotypic plasticity interact to promote character displacement and species coexistence. Ecology 87: 769–779.

    Article  Google Scholar 

  • Pucek Z. 1964. The structure of the glans penis inNeomys Kaup, 1929 as a taxonomic character. Acta Theriologica 9: 374–377.

    Google Scholar 

  • Rácz G. and Demeter A. 1998. Character displacement in mandible shape and size in two species of water shrews (Neomys, Mammalia: Insectivora). Acta Zoologica Academiae Scientarum Hungaricae 44: 165–175.

    Google Scholar 

  • Rychlik L., Ramalhinho G. and Polly D. 2006. Response to environmental factors and competition: skull, mandible, and tooth shape in Polish water shrews (Neomys, Soricidae, Mammalia). Journal of Zoological Systematics and Evolutionary Research 44: 339–351.

    Article  Google Scholar 

  • Schluter D. 2000. Ecological character displacement and adaptive radiation. The American Naturalist 156: S4-S16.

    Article  Google Scholar 

  • Schluter D. and McPhail J. D. 1992. Ecological character displacement and speciation in sticklebacks. The American Naturalist 140: 85–108.

    Article  CAS  PubMed  Google Scholar 

  • Snell R. R. and Cunnison K. M. 1983. Relation of geographic variation in the skull ofMicrotus pennsylvanicus to climate. Canadian Journal of Zoology 61: 1232–1241.

    Article  Google Scholar 

  • Sneth P. H. A. and Sokal R. R. 1973. Numerical taxonomy: the principles and practice of numerical classification. Freeman and Company, San Francisco: 1–962.

    Google Scholar 

  • Taper M. L. and Case T. J. 1992. Coevolution among competitors. Oxford Surveys in Evolutionary Biology 86: 63–109.

    Google Scholar 

  • White T. A. and Searle J. B. 2007. Factors explaining increased body size in common shrews (Sorex araneus) on Scottish islands. Journal of Biogeography 34: 356–363.

    Article  Google Scholar 

  • Wolff J. O. and Guthrie R. D. 1985. Why are aquatic small mammals so large? Oikos 45: 365–373.

    Article  Google Scholar 

  • Yom-Tov Y. and Geffen E. 2006. Geographic variation in body size: the effects of ambient temperature and precipitation. Oecologia 148: 213–218.

    Article  PubMed  Google Scholar 

  • Yom-Tov Y. and Yom-Tov J. 2005. Global warming, Bergmann’s rule and body size in the masked shrewSorex cinereus Kerr in Alaska. Journal of Animal Ecology 74: 803–808.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Associate editor was P. David Polly.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kryštufek, B., Quadracci, A. Effects of latitude and allopatry on body size variation in European water shrews. Acta Theriol 53, 39–46 (2008). https://doi.org/10.1007/BF03194277

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03194277

Key words

Navigation